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Among other sources of uncertainties in hydrologic modeling, spatial 

rainfall variability, channel hydraulic variability, and model parameter uncertainty 

were evaluated. The Monte Carlo and Harr methods were used to assess 90% 

certainty bounds on simulated flows. The lumped watershed model, Hydrologic 

Simulation Program FORTRAN – HSPF, was used to simulate streamflow at the 

outlet of the Luxapallila Creek watershed in Mississippi and Alabama. Analysis of 

parameter uncertainty propagation on streamflow simulations from 12 HSPF 

parameters was accomplished using 5,000 Monte Carlo random samples and 24 

Harr selected points for each selected parameter. Spatial rainfall variability 

propagation on simulated flows was studied using six random grid point sets of 

Next Generation Weather Radar (NEXRAD) rainfall data (i.e., 109, 86, 58, 29, 6, 

and 2 grid points) from the baseline scenario (115 NEXRAD grid points). 
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Uncertainty in channel hydraulic properties was assessed comparing the 

baseline scenario (USGS FTABLE) versus the EPA RF1 FTABLE scenario. The 

difference between the baseline scenario and the remaining scenarios in this 

study was evaluated using two criteria: the percentage of observed flows within 

the HSPF 90% certainty bounds (Reliability) and the width of the HSPF 90% 

certainty bounds (Sharpness). Daily observed streamflow data were clustered 

into three groups to assess the model performance by each class: below normal, 

normal, and above normal flows. The parameter uncertainty propagation results 

revealed that the higher the model Sharpness the lower the model Reliability. 

The model Sharpness and Reliability results using 2 NEXRAD grid points were 

markedly different from those results using the remaining NEXRAD data sets. 

The hydraulic property variability of the main channel affected storm event paths 

at the watershed outlet, especially the time to peak flow and recessing limbs of 

storm events. The comparison showed that Harr’s method could be an 

appropriate initial indicator of parameter uncertainty propagation on streamflow 

simulations, in particular for hydrology models with several parameters. 

Parameter uncertainty was still more important than those sources of uncertainty 

accomplished in this study because all of the median relative errors of model 

Reliability and Sharpness were lower than +/- 100%. 

Key words: HSPF, parameter uncertainty, rainfall spatial variability, hydraulic 

property variability, Monte Carlo simulation, Harr method, certainty bounds of 

streamflow simulations. 
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CHAPTER I 

INTRODUCTION 

1.1 Motivation 

Advances in gathering hydrology data using remote sensing, increased 

computer data storage capability, and faster processing speeds allow 

researchers to develop and apply increasingly complex hydrologic models 

(physics-based, 3-dimensional, and distributed models). The more recent 

availability of high-resolution hydrologic data from modern radar networks 

provides further potential for advancements in watershed modeling.  However, 

when analyzing model results, hydrologists are faced with various uncertainties 

in input and output data, model parameters, and model structure.  These 

uncertainties may negatively affect the usefulness of hydrologic models. Error 

analysis propagation throughout different components of a hydrologic model are 

one of the major challenges in evaluating a model (Singh and Frevert, 2002b). 

Thus far, research has focused on determining the magnitude of uncertainties of 

input data or model parameters. Few researchers have considered the combined 

effects of uncertainties on model results (Souid, 1999).  

Hydrologic models are represented by a series of input data (e.g., 

precipitation and evaporation), parameters (e.g., soil, land use, and channel 

1 
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properties), and structure (e.g., black-box, conceptual, physically based, grid, 

and lumped models). Generally, every component of hydrologic models depicts 

uncertainty due to the lack of knowledge about real systems. Uncertainty in input 

data is due to natural variability, measurement inaccuracy, and errors in handling 

and processing data (Melching, 1995). Model parameters and structure show 

uncertainty due to model assumptions/approximations, scale effects, and 

variability of inputs and parameters in time and space (Gupta et al., 2005; Tung, 

1996). The uncertainty of input data on model results have been studied 

separately from model parameter uncertainty (Souid, 1999). Georgakakos et al. 

(2004) pointed out that few have researched model structure uncertainty.  Butts 

et al. (2004) declared that uncertainty evaluation is compensated among 

components (input data, model parameters, and model structure) because they 

are strongly interlinked. 

Numerous real world hydrologic models exist, e.g., continuous or event 

based, distributed or lumped parameters, and empirical or physical equations 

(Singh, 1995; Singh and Woolhiser, 2002; Singh and Frevert, 2002a). The 

Hydrological Simulation Program -  FORTRAN (HSPF), a continuous lumped 

model supported by the U.S. Environmental Protection Agency (EPA), is 

extensive and has been successful in evaluating different regions around the 

world since 1980; however, little work has been done to quantify the combined 

effect of input data (e.g., rainfall and channel hydraulic properties) and 

parameter uncertainty on model simulations.  EPA’s 2002 guideline on modeling 

recommended 

2 
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“best practices to help to determine when a model, despite its 
uncertainties, can be appropriately used to inform a decision. Specifically, 
it recommends that model developers and users: (a) subject their model to 
credible, objective peer review; (b) assess the quality of the data they use; 
(c) corroborate their model by evaluating the degree to which it 
corresponds to the system being modeled; and (d) perform sensitivity and 
uncertainty analysis… A model’s quality to support a decision becomes 
known when information is available to assess these factors.” 

Researchers believe spatial and temporal variability of precipitation data is 

the main source of input data uncertainty when rainfall-runoff models are applied 

(Vieux, 2002; Butts et al., 2004; Neary et al., 2004; Lopez et al., 2005).  In 

addition, model parameter estimation is affected by a poor knowledge of 

precipitation input data (Andreassian et al., 2001).  Indeed, rainfall distribution 

must be a main feature when a hydrologic model is developed and evaluated 

(Hromadka II and McCuen, 1989). Osborn and Lane (1982) said 

“for small watersheds, the input with greatest variability is rainfall. 

Therefore, the accuracy of streamflow simulation depends primarily on 

how well this variability can be defined in a specific case.” 

Aronica et al. (2005) pointed out that model structure and sensitivity of model 

parameters make a model more or less sensitive to rainfall temporal resolution. 

Assessments of rainfall input data uncertainty in hydrologic simulation have been 

done by various authors, e.g., Anagnostou and Krajewski (1999), Bronster and 

Bardossy (2003), Sharif et al. (2004), and Aronica et al. (2005).  

Precipitation is measured/calculated using gage, radar, and satellite data. 

Point precipitation is directly measured using gages.  Both radar and satellite 

precipitation values are indirect estimates of rainfall. Errors in measuring rain 

3 
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gage data are possibly due to mistakes in reading the scale of the gage, 

instrumental errors, the malfunctioning of instruments due to biological and 

human interference, and wind effects (Linsley et al., 1988; Steiner et al., 1999). 

Data from rain gage networks are used to calculate the average precipitation 

over an area. Linsley et al. (1988) said that average precipitation errors are 

greater for storms than for monthly or seasonal rainfall. Dense precipitation 

networks are expensive to maintain and operate. On the other hand, radar-

derived precipitation is now a better alternative for estimating the spatial 

variability of precipitation (Vieux, 2002; Neary et al., 2004); however, radar 

rainfall estimations show uncertainty due to radar reflectivity-precipitation rate 

transformation and radar range (Sharif et al., 2004).  Satellite devices provide 

global information on rainfall frequency and intensity, but depend on the 

properties of the cloud top, cloud liquid, and ice content to calculate precipitation 

values. 

Model parameters are another component of hydrologic models that 

propagate uncertainty through model results. Watershed models are complex 

and highly parameterized. For instance, the HSPF model uses 26 parameters to 

simulate flow in a pervious land segment without snow simulation (Bicknell et al., 

2001). So, more than one calibrated parameter set may be obtained with equal 

streamflow simulations (Doherty and Johnston, 2003; Jia, 2004) and high 

correlation between parameters would be expected. Both problems mean that 

the model and/or measured data may not be appropriate to represent the 

physical values (Draper and Smith, 1998). In addition to the non-uniqueness and 
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correlation in model parameter sets, watershed models are simplifications of the 

physical world. Therefore, parameters and structure of watershed models 

produce uncertainty. Research on model parameter uncertainty in watershed 

models has been done by several authors, e.g.,  Dawdy and O’Donnell (1965), 

Wood (1976), Garen and Burges (1981), Beven and Binley (1992), Farajalla 

(1995), Senarath (2000), Beven and Freer (2001), Melching and Bauwens 

(2001), Benaman and Shoemaker (2004), Carpenter and Georgakakos (2004), 

and Sieber and Uhlenbrook (2005). Some approaches to calculate structural 

uncertainty have been done by Draper (1995), Wagener et al. (2003), and Butts 

et al. (2004); however, separation between structural and parametric uncertainty 

has not yet been understood (Wagener, 2003). 

Little research considers the combined effects of input data and parameter 

uncertainties on model results (Souid, 1999). Assessments of combined 

uncertainty in both input data and model parameters have been done by Souid 

(1999), Butts et al. (2004), and Carpenter and Georgakakos (2004).  Souid 

(1999) concluded that “the main source of the flood forecast uncertainty is due to 

uncertainties in rainfall model and not those in the catchment model.” Carpenter 

and Georgakakos (2004) found an inverse correlation between watershed area 

and model uncertainty in streamflow simulations.  Butts et al. (2004) believe 

rainfall uncertainty values are less than parametric and structural uncertainties. 

Techniques applicable for evaluating error propagation from different 

sources on hydrology model results can be arranged in three groups: 

• first-order methods, 
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• probabilistic point estimate methods (e.g., Harr’s method and 

Rosenblueth’s method), and  

• Monte Carlo simulation and re-sampling methods. 

Applications and comparisons of these techniques on hydrology models 

can be found in Rogers et al. (1985), Binley et al. (1991), Melching (1995), and 

Yu et al. (2001). In general, these studies assumed that the results of the Monte 

Carlo method were most reliable when estimations from other uncertainty 

methods were compared. The Monte Carlo simulation is the best known and 

simplest way of sampling the entire range of likely observations of the system 

being studied (Morgan and Henrion, 1990).  Most of the first-order and 

probabilistic point estimate methods are more computationally efficient than the 

Monte Carlo method. Melching (1995) pointed out that “research is needed to 

define strengths and weaknesses of applying these methods to computer models 

of watershed hydrology.” 

Uncertainty analysis of computer-based models is a valuable tool to do the 

following (Morgan and Henrion, 1990; Tung, 1996; Tung and Yen, 2005):  

• understand the inability of a model to accurately and precisely depict the 

real world; 

• enhance the value of information reported; 

• distinguish between bias and precision error; 

• calculate the precision limit of results; 

• identify which components are most and least important; 
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• determine where to place more effort/resources to decrease the total 

uncertainty of the output; 

• re-build a model; 

• understand model limitations and strengths; 

• calculate statistical properties of a model output; 

• determine reliability analysis; and 

• compare and choose between models. 

1.2 Research Goals and Questions 

The main goals of this study were to 1) evaluate two uncertainty methods, 

the Monte Carlo method and Harr’s probabilistic point estimate method, and 

2) evaluate the effects of rainfall spatial variability, hydraulic channel variability, 

and parameter uncertainty on HSPF streamflow results. Physical data from the 

Luxapallila Creek watershed were used to set up the HSPF model. This 

watershed is located in Alabama and Mississippi. U.S. Geological Survey 

(USGS) data collected at the watershed outlet from 01/01/2002 to 12/31/2005 

were used to evaluate model results. The three basic research questions were 

stated below: 

• How does uncertainty in model parameters, rainfall spatial data, and 

channel hydraulic properties propagate through flow simulations of a 

lumped watershed model? 

• How consistent is the Harr method (i.e., probabilistic point estimate 

method) to estimate the 90% certainty bounds of streamflow simulations? 

7 



www.manaraa.com

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

• Where do researchers need to put resources in terms of data collection so 

uncertainty in streamflow simulations may be lowered? 

1.3 Research Hypothesis 

Uncertainty in rainfall input data, channel hydraulic data, and model 

parameters introduce significant uncertainty on HSPF streamflow results. This 

uncertainty can be reliably quantified using either the Monte Carlo or Harr 

methods. 
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CHAPTER II 

LITERATURE REVIEW 

2.1 Hydrologic Models 

2.1.1 Overview 

The U.S. Environmental Protection Agency - EPA (2002) defined a model 

as “a representation of the behavior of an object or process, often in 

mathematical or statistical terms.” Hydrologic modeling is a representation of 

rainfall and runoff processes. Numerous real world watershed models exist, for 

instance, continuous or event based, distributed or lumped, and empirical or 

physical (Singh, 1995; Singh and Woolhiser, 2002; Singh and Frevert, 2002a). 

Watershed models such as the Hydrological Simulation Program – FORTRAN 

(HSPF) (Bicknell et al., 2001) and the Soil and Water Assessment Tool (SWAT) 

(Neitsch et al., 2005) are popular continuous models. The EPA has recently 

developed the Better Assessment Science Integrating Point and Nonpoint 

Sources (BASINS) software (USEPA, 2001), which links HSPF, SWAT and other 

models with a Geographic Information System (GIS) software. Also, BASINS 

incorporates an extensive U.S. data base (i.e., land use, climatological and water 
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quality data for most regions in the nation), graphical and statistical analysis and 

reporting tools. 

Singh and Woolhiser (2002) and Todini (2007) who give a historical review 

of hydrological watershed modeling, believe that the Rational Method developed 

in 1850 was the first hydrological modeling approach. Singh and Woolhiser 

(2002) pointed out that “the Stanford Watershed Model – SWM (now HSPF) by 

Crawford and Linsley (1966), was probably the first attempt to model virtually the 

entire hydrologic cycle.” Table 1 shows information on some popular hydrologic 

models used in North America. The U.S. Bureau of Reclamation developed a 

hydrologic modeling inventory of 83 models (http://www.usbr.gov/pmts/rivers 

/hmi/index.html). The inventory is structured by 19 key questionnaire topics. 

Singh et al. (2006) believe that “This inventory is among the first of its kind and is 

useful not only for modelers but water resource planners and managers.” 

Hydrology models are applied for many reasons (Wagener et al., 2004; Singh 

and Woolhiser, 2002): 

• for water resources assessment (e.g., reservoir system operations); 

• to quantify the impacts of watershed management strategies (e.g., 

development of Total Maximum Daily Loads - TMDLs); 

• as load models linked to instream/estuary models; 

• to understand dynamic interactions between climate and land 

surface hydrology; or 

• to provide boundary conditions for atmospheric circulation models; 
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• “to inform decisions that are important for human health and the 

environment” (USEPA, 2002), (e.g., real time flood forecasting). 

Table 1. Selected hydrologic models used in North America 

Model name/acronym Source Author Characteristics 
Hydrological Simulation USEPA and USGS.  Bicknell et al., 2001 Continuous, processes based, 
program – FORTRAN http://www.epa.gov/ceampubl lumped model of hydrology cycle 
(HSPF) /swater/hspf/index.htm. and water quality processes 

http://water.usgs.gov/softwar 
e/hspf.html 

Soil and Water U.S. Department of Neitsch et al., 2005 Continuous simulation of hydrology, 
Assessment Tool (SWAT) Agriculture (USDA) erosion, sediment transport, and 

.http://www.brc.tamus.edu/sw water quality 
at/ 

Hydrologic Engineering U.S. Army Corps of USACE, 2001 Designed to simulate the 
Center – Hydrologic Engineers (USACE). precipitation-runoff processes of 
Modeling System (HEC- http://www.hec.usace.army.m dendritic watershed systems 
HMS) il/software/hec-hms/ 
Storm Water USEPA. Rossman, 2005 Event or continuous model of water 
Management Model http://www.epa.gov/ednnrmrl/ processes in urban areas 
(SWMM) models/swmm/index.htm 
Sacramento Soil Moisture U.S. National Weather Burnash, R.J.C., Conceptually based rainfall runoff 
Accounting (SAC-SMA) System (NWS) 1995 model with spatially lumped 
Model 
MIKE SHE Danish Hydraulic Institute DHI, 1998 

parameters 
Physically based processes of 2-D 

(DHI). overland flow, 1-D river flow, and 2-
http://www.dhi.dk/www,-d-
,dhigroup,-d-

D or 3-D groundwater flow 

,com/Software/WaterResourc 

Annualized Agricultural 
es/MIKESHE.aspx 
USDA. Bingner et al., 2001 Continuous model developed to 

Non -Point Source http://www.ars.usda.gov/Res predict surface runoff and non point 
(AGNPS) model earch/docs.htm?docid=5199 source pollutant loadings within 

agricultural watersheds. 

2.1.2 Hydrology Modeling Using Radar Precipitation 

Hydrologic models are represented by a series of input data (e.g., 

precipitation and evaporation), parameters (e.g., soil, land use, and channel 

properties), and structure (e.g., black-box, conceptual, physically based, 

distributed, and lumped models). Researchers believe spatial and temporal 

variability of precipitation data is the main source of input data uncertainty when 

rainfall-runoff models are applied (Vieux, 2002; Butts et al., 2004; Neary et al., 

2004; Lopez et al., 2005). Precipitation is measured/calculated using gage, radar, 
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or satellite data. Point precipitation is directly measured using gages.  Both radar 

and satellite precipitation values are indirect estimates of rainfall. Dense rain 

gage networks are expensive to maintain and operate. On the other hand, radar-

derived precipitation is now a better alternative to estimate the spatial variability 

of precipitation (Vieux, 2002; Neary et al., 2004); however, radar rainfall 

estimations show uncertainty due to radar reflectivity-precipitation rate 

transformation and radar range (Sharif et al., 2004).   

The National Weather Service (NWS), Air Force Weather Agency 

(AFWA), and Federal Aviation Administration (FAA) control approximately 159 

Weather Surveillance Radar-1988 Doppler (WSR-88D) sites throughout the U.S. 

and selected overseas locations (NOAA/NCDC, 2007). This network is named 

the Next Generation Weather Radar system (NEXRAD). In general, the range of 

each radar installation is around 230 km. NEXRAD data are acquired and 

processed in two levels (i.e., levels II and III). Level II consists of raw data            

- unprocessed reflectivity, mean radial velocity, and spectrum width data. Level III 

includes processing raw radar data using computer algorithms to yield 41 

products (e.g., 1-hour precipitation total, 3-hour precipitation total, and storm total 

accumulation). The precipitation products are aggregated at various resolutions 

and time intervals called Stage I, II, III, and IV. Stage I data are hourly 

precipitation accumulations without adjustment to rain gage data.  Stage II data 

include gage-radar bias corrections and local adjustments to a multisensor 

precipitation field. Stage III data use Stage II products from multiple radars to 
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create a mosaic of coverages. The national Stage IV product is based on Stage 

III data. Stage IV data are archived since January 2002. 

Researchers have found differences between rain gage and radar-derived 

values of mean aerial precipitation (Johnson et al., 1999).  Johnson et al. (1999) 

found a general underestimation between 5% and 10% of mean aerial 

precipitation derived by stage III radar compared with that derived from a rain 

gage network in the southern plains region of U.S. In streamflow simulations, 

they identified large monthly biases, but inconsistent results were found when 

storm events were evaluated. 

Lopez et al. (2005) calibrated an event model using radar and rain gage 

data in Italy. They found that flow simulations using radar precipitation data 

performed better than flow simulations using rain gage data. Neary et al. (2004) 

simulated streamflow in a Tennessee watershed using two rainfall inputs, Stage 

III NEXRAD data and rain gage data.  The main conclusions of this work were 

that the performance of radar at low precipitation intensities was poor; significant 

precipitation was not detected by both instruments; flow simulations were not 

reproduced well; water volumes were better predicted by rain gage data than by 

radar precipitation; and time to peak simulated with both radar-derived and rain 

gage data were very similar. 

Moon et al. (2004) compared flow simulations using the SWAT model with 

precipitation data from rain gage and radar devices. Stage III NEXRAD data and 

data from six rain gages were used in a 2,608 km2 Texas watershed. The daily 

coefficient of determination values between rain gage data and radar data were 
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greater than 0.65 for five out of the six stations evaluated. Close values of the 

daily Nash-Sutcliffe coefficient (see section 2.3) for model simulations using rain 

gage and radar data were calculated, and high flow events were better simulated 

using radar data. The authors suggested that radar precipitation is a good 

alternative to rain gage data in watersheds with sparse or no rain gage networks. 

2.2 Hydrological Simulation Program – FORTRAN (HSPF) 

This section provides a review of the hydrology model evaluated in this 

study. The HSPF model is a numerical, process-based, lumped, continuous 

software developed under EPA sponsorship to simulate hydrology and water 

quality processes in pervious or impervious areas. The first version of HSPF was 

released in 1980, while version 12 is the most recent (Bicknell et al., 2001). 

HSPF has its origin in four previously developed models: 1) Hydrocomp 

Simulation Programming (HSP); 2) NonPoint Source (NPS) Model; 3) Agricultural 

Runoff Management (ARM) Model; and 4) Sediment and Radionuclides 

Transport (SERATRA) (Bicknell et al., 2001). Donigian et al. (1995) declared that 

database input management and algorithms for the stream sediment-nutrient, 

wetlands capabilities, and best management practices for the HSPF model have 

been improved over earlier versions. 

Extensive and successful applications of HSPF components (hydrology, 

erosion, sediment transport, and instream water quality) in urban and rural areas 

around the world have been reported (e.g., Moore et al., 1988; Chew et al., 1991; 

Laroche et al., 1996; Fontaine and Jacomino, 1997; Jacomino and Fields, 1997; 
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Carrubba, 2000; Zhang, 2001; Al-Abed and Whiteley, 2002; Engelmann et al., 

2002; Doherty and Johnston, 2003; Johnson  et al., 2003; Paul, 2003; Albek et 

al., 2004; Diaz, 2004; Hayashi et al., 2004; Im et al., 2004; Jia, 2004; and Wu, 

2004). Graphical interfaces for HSPF are used in various computer simulation 

programs such as the Watershed Modeling System - WMS (EMS-I, 2002) and 

BASINS (USEPA, 2001). 

2.2.1 Hydrological Simulation 

This section presents a brief summary of the capabilities of HSPF for 

modeling hydrology processes. A detailed description of HSPF can be found in 

the HSPF User’s manual (Bicknell et al., 2001).    

The HSPF model is divided into three application modules and five utility 

modules. Application modules simulate runoff and water quality processes in 

pervious areas (PERLAND), impervious areas (IMPLND), and during routing 

through reservoir and reaches (RCHRES) (Donigian et al., 1995).  Time series 

(i.e., meteorological and flow observed data) are accessed, manipulated, and 

analyzed in the utility modules. 

Algorithms for hydrological simulation in HSPF originated from the 

Stanford Watershed Model (Linsley et al., 1988). A flow diagram of the 

hydrological components of HSPF is shown in Figure 1.  This diagram is a 

reservoir-type model consisting of five storage classes (interception, upper zone, 

lower zone, baseflow, and deep percolation), each allowing different types of 

inflow and outflow. Inflows and outflows are simulated in HSPF as water-balance 
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accounting.  Each pervious land segment considers the following processes: 

interception, evapotranspiration, surface detention, surface runoff, infiltration, 

shallow subsurface flow (interflow), base flow, and deep percolation (Donigian et 

al., 1995). Surface detention and surface runoff are the only components 

simulated in impervious areas. 

Figure 1. Hydrological components simulated in HSPF (after Diaz, 2004) 

Before running HSPF, the watershed area must be delineated into 

homogeneous land areas called Hydrologic Response Units (HRUs). For each 

HRU the combination of weather, soil, land use, topographic and geologic 

properties is unique, giving rise to its “semi-distributed” model structure. HRUs 

can be impervious or pervious areas, which are modeled independently.  Each 
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HRU requires input data such as rainfall, temperature, potential 

evapotranspiration, and parameters related to land use, soil characteristics, and 

agricultural practices to simulate hydrology, sediments, nutrients and pesticides 

(Donigian et al., 1995).  HRU outputs are not connected laterally, but outputs are 

connected to the nearest channel. This simplification makes the HSPF model 

implementation/application easy and fast; however, some physical information 

among HRU processes can be lost. 

The HSPF software uses empirical formulations to model the movement of 

water within each HRU. The model uses 26 parameters (17 constant, 7 initial 

storage, and 2 monthly parameters) to simulate water budget in a pervious land 

segment without snow simulation (Bicknell et al., 2001).  It uses both conceptual 

and physical parameters to simulate the water balance in a HRU. Table 2 shows 

definition and calibration scenarios of 17 HSPF hydrology parameters used to 

model the water budget in a pervious land segment without snow simulation. 

This Table shows that most of the HSPF parameters influence only one 

calibration scenario (LZSN, KVARY, NSUR, and LSUR); however, parameters 

such as INFILT and LZETP influence more than one calibration scenario. 

Physical parameters include length and slope of surface flow, LSUR and SLSUR, 

respectively. Conceptual parameters include storage capacities (upper and lower 

zones of the soil, UZSN, and LZSN, respectively), interflow parameter (INTFW), 

infiltration parameter (INFILT), baseflow recession parameter (AGWRC), and 

evapotranspiration rates from various storage types (LZETP, BASETP, and 

AGWETP). Interception loss (CEPSC) is simulated by assuming an interception 
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storage capacity according to the type of vegetation on the HRU.  Volume of 

interception storage must be filled before excess precipitation can reach the land 

surface; intercepted water is subsequently evaporated.   

Table 2. Calibration scenarios (USEPA, 2006b) 

Name Definition Calibration Scenarios 
(unit) Water 

Balance 
High/Low 

Flow 
Distribution 

Storm 
Flow 

Seasonal 
Discrepancies 

LZSN (mm) 

INFILT 
(mm/hr) 
LSUR (m) 
SLSUR 

KVARY 
(1/mm) 
AGWRC 

Lower zone nominal soil 
moisture storage 
Index to infiltration 
capacity 
Length of overland flow 
Slope of overland flow 
plane 
Variable groundwater 
recession 
Base groundwater 
recession 

X 

X X 

X 

X 

X 

X 

X 

INFEXP 

INFILD 

DEEPFR 

BASETP 

Exponent in infiltration 
equation 
Ratio of max/mean 
infiltration capacity 
Fraction of groundwater 
inflow to deep recharge 
Fraction of remaining 
evapotranspiration from 
baseflow 

X X 

X X 

AGWETP 

CEPSC 
(mm) 
UZSN (mm) 

NSUR 

Fraction of remaining 
evapotranspiration from 
active groundwater 
Interception storage 
capacity 
Upper zone nominal soil 
moisture storage 
Manning’s n for overland 
flow X 

X 

X 

X 

INTFW 
IRC 

LZETP 

Interflow inflow parameter 
Interflow recession 
parameter 
Lower zone 

X 

X 

evapotranspiration X X 
parameter 
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Infiltration is calculated by means of a negative power relationship. Both 

Hortonian and saturation excess overland flow can be simulated in HSPF. A 

portion of surface runoff becomes upper-zone storage, simulating both 

depression storage and upper-soil storage, and the balance becomes overland 

flow. Infiltrated water that does not go into interflow or lower-zone storage is 

finally placed in the active groundwater storage.  Active groundwater storage is 

divided into deep percolation and base flow. Deep percolation is simulated as a 

sink. Base flow is simulated using linear and power equations.  

Actual evapotranspiration is simulated in response to the input value of 

potential evapotranspiration. Water evaporates first from the riparian vegetation 

(wetlands). Further actual evapotranspiration is satisfied sequentially by 

interception storage, upper zone storage, active ground water, and lower-zone 

storage where each storage type has a different resistance to evaporation.  In 

this way, the maximum potential of each storage type is depleted either when all 

storage classes have contributed their maximum amount to evapotranspiration or 

until the potential evapotranspiration has been fully satisfied. 

The HSPF program simulates snowmelt as a complex energy balance 

problem. It is a result of a series of routines that compute net radiation exchange 

on the snow surface, convection and condensation melt, heat transfer from the 

earth to the bottom of the snowpack where the soil is not frozen, and melt due to 

rainfall. Input data used by HSPF for snowmelt are obtained from direct 

measurements and include: precipitation, dewpoint temperature, wind speed, 

cloud cover, solar radiation, and evapotranspiration. 
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Flow routing in HSPF takes place in two regimes: on the overland flow 

plane and in the river channel network.  Overland flow is routed using a power 

equation that relates the Manning friction coefficient, the slope and length of the 

land surface, and detention storage.  HSPF employs the Muskingum method to 

move water from one reach to the next in the river channel network.  This method 

is based on the principle of mass conservation (Ponce, 1989).  Flow is modeled 

as unidirectional and complete mixing is assumed by the model in streams and 

lakes. For each reach, a fixed relationship is assumed between water level, 

surface area, volume, and discharge (components of the FTABLE database). 

These physical data are specified by the user.  HSPF calculates hydraulic 

variables such as hydraulic radius, shear stress, and velocity, assuming that the 

cross-section of the reach is constant throughout the reach (Bicknell et al., 2001).   

Simplification of the real world with conceptual parameters avoids the 

need to give physical dimensions of the flow system (Bicknell et al., 2001). This 

approach is advantages for reducing input requirements and, more importantly, 

gives the model its generality (Linsley et al., 1988). Parameters such as 

percentage of impervious area, average length of overland flow, and average 

slope of overland flow are determined from maps.  Other parameters pertaining 

to infiltration, for instance, soil-moisture zones and interflow are determined by 

calibration or comparison with observed hydrographs (Linsley et al., 1988). 

In summary, the HSPF model uses physical concepts (water balance), 

empirical equations (linear and power relationships), physical data (rainfall, 

evaporation, slope and length of land surface, and hydraulic characteristics of the 
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channel network), and parameters (interflow, infiltration) to simulate the flow of 

water in pervious/impervious areas and channels. Most of the parameters are 

conceptual and usually must be calibrated against flow measured at the outlet of 

the watershed. Due to the extensive use of HSPF, a parameter range database 

(HSPFParm) is available to help in the calibration process (USEPA, 2006a). 

Additionally, the BASINS EPA website gives guidelines to calibrate HSPF 

hydrology parameters. 

2.3 Evaluation of Hydrologic Model Results 

Any computer modeler needs to measure how well the model emulates 

the real world. James and Burges (1982) defined model evaluation as “judge of 

the model adequacy for decision-making.” This section reviews two approaches 

to evaluate model outputs: deterministic and probabilistic evaluation.  

2.3.1 Deterministic Evaluation 

In a deterministic evaluation, it is assumed that all input variables are 

known with perfect accuracy. For instance, when a hydrologic model is evaluated 

at the watershed outlet, it is assumed that the simulated and observed 

streamflows are known with perfect accuracy. 

Deterministic evaluation of models requires graphical and statistical tests 

(James and Burges, 1982; Thomann, 1982; Legates and McCabe, 1999). James 

and Burges (1982) recommended graphical comparisons such as a continuous 

time series plot of simulated and observed data, a continuous time series plot of 
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the difference between recorded and simulated values (residuals), and a scatter-

gram of recorded data plotted against simulated values. Graphical analyses are 

clearly visual but quite subjective (Thomann, 1982).  On the other hand, statistics 

such as coefficient of determination (R2) and Nash-Sutcliffe coefficient (NS) have 

been developed to better describe the degree of association between the 

observed and simulated data. Additionally, Legates and McCabe (1999) 

recommended the use of residual analyses such as mean absolute error (MAE) 

and root mean square error (RMSE). 

The coefficient of determination (R2), which is the square of Pearson’s 

product-moment correlation coefficient, represents the fraction of variability in y 

that can be explained by the variability in x. It ranges from zero to one, with 

higher values indicating better agreement, and is given by the following: 

2
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where O j  is the observed value at time step j; O   is the average observed value 

during evaluation period; S j  is the model simulated valued at time step j; and 

S  is the average simulated value at time step j. 

The NS coefficient (Nash and Sutcliffe, 1970) represents the fraction of 

the variance in the measured data explained by the model.  The NS ranges from 

minus infinity to one. A value of one in NS represents perfect fit. The NS 

coefficient has been used by many researchers and is considered as one of the 
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best statistics for evaluation of continuous-hydrograph simulation programs 

(Bergman et al., 2002; Engelmann et al., 2002; Carrubba, 2000; Legates and 

McCabe, 1999; Laroche et al., 1996; ASCE, 1993; James and Burges, 1982). 

The NS is given by the following equation: 

n 

∑ (O − S )2 
j j                 (2) j 1 

n 
=NS =1− 

= 
∑ 

1 
(O j − O j )

2 

j 

The mean absolute error (MAE) and root mean square error (RMSE) are 

dimensioned measures of average model-performance error: 

n 

O − Sj j 
j 1 
∑
=            (3) MAE = 

n 

Advantages and disadvantages of these statistical criteria are shown in 

Table 3. Legates and McCabe (1999) pointed out that “one of the biggest 

problems associated with all relative error or “Goodness-of-Fit” measures is one 

of interpretation.” 

(4)  
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Table 3. Advantages and disadvantages of selected statistical criteria  

Criteria 
R2 

Advantages 
Measure of the usefulness of 
a linear regression equation 

Disadvantages 
Data are normally distributed 
“Insensitive to additive and 
proportional differences between 
the model simulations and 
observation; large values can be 
obtained even when the model 
simulated values differ 
considerably in magnitude and 
variability; more sensitive to 
outliers than to observations near 
the mean, because of the 

NS “it is sensitive to differences in 

squared differences” (Legates 
and McCabe, 1999) 
“is more sensitive to extreme 

RMSE 

MAE 

the observed and model-
simulated means and 
variances” (Legates and 
McCabe, 1999) 
Evaluation of the error in the 
units of the variable 

Same as RMSE and, “(unlike 
RMSE) it is an unambiguous 
measure of average error 
magnitude” (Willmott and 
Matsuura, 2005) 

values, as is R2”(Legates and 
McCabe., 1999) 

“it tends to become increasingly 
larger than MAE (but not 
necessarily in a monotonic 
fashion) as the distribution of 
error magnitudes becomes more 
variable” (Willmott and Matsuura, 
2005) 
“interpretation” (Legates and 
McCabe, 1999) 

Criteria for evaluating model performance depend on the process 

simulated (flow, sediments, pesticide or water quality). To date, modeling 

professionals (developers and users) have not reached a consensus about which 

criteria is best for evaluating model performance (Beach et al., 2000; Bergman et 

al., 2002). Donigian (2000), a developer of HSPF for the last 20 years, provides 
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guidelines for evaluation of the HSPF simulation results (Tables 4 and 5). Table 4 

shows the relative percentages of error between observed constituent and 

simulated data by HSPF. This Table applies to monthly and annual errors rather 

than daily differences. Table 5 shows typical R2 values for daily and monthly time 

series to evaluate model performance. 

Tabla 4. General guidelines for evaluation of HSPF performance (Donigian,  
2000) 

Constituent % Difference between simulated and recorded 
values 

 Very good Good Fair 
Hydrology/flow < 10 10 - 15 15 - 25 
Sediment < 20 20 - 30 30 - 45 
Water temperature < 7 8 – 12 13 - 18 
Water quality/nutrients < 15 15 - 25 25 - 35 
Pesticides/toxics < 20 20 - 30 30 - 40 

Table 5. Typical values of coefficient of determination (R2), for daily and 
monthly time series when evaluating model performance (Donigian, 
2000) 

Statistic Poor Fair Good Very good 
R2 (daily) 0.52-0.61 0.62-0.72 0.73-0.81 0.82-1.0 
R2 (monthly) 0.52-0.64 0.65-0.76 0.77-0.85 0.86-1.0 

2.3.2 Probabilistic Evaluation 

Probability is used to describe variability, including the lack of knowledge 

or lack of certainty about something. Probability is used as a tool in many areas 

of modeling. For instance, a hydrologic modeler uses probability to learn how a 

model parameter propagates uncertainty on model results. In order to analyze 
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uncertainties, a probabilistic evaluation is required. This section provides an 

introduction to the main terms used in probabilistic evaluation. Further discussion 

of probabilistic evaluation is found in this study in Section 2.4, Uncertainty 

Analysis in Hydrologic Modeling. 

Haan et al. (1995) described a probabilistic procedure for evaluating 

hydrologic models. The following steps were declared: “generate probability 

distributions on input parameters; generate probability distributions on model 

outputs; and use the output probability distribution to assess the model.” Tung 

(1996) pointed out that 

“the most complete and ideal description of uncertainty is the probability 
density function of the quantity subject to uncertainty… Another measure 
of the uncertainty of a quantity is to express it in terms of a confidence 
interval…A useful alternative is to use the statistical moments associated 
with a quantity subject to uncertainty. In particular, the second-order 
moment.” 

Ponce (1989) defined a probability distribution as “a function that 

expresses in mathematical terms the relative chance of occurrence of each of all 

possible outcomes of the random variable.” An example of a random variable 

and probability distribution is shown in Figure 2. The random variable is an 

HSPF parameter called INTFW (see Table 2 for definition).  The possible 

outcomes have been separated into nine classes. The sum of probabilities of all 

possible outcomes is equal to one. In Figure 2, the probability that INTFW is in 

the class 2.5-3.5 is 0.18. Additionally, Figure 2 suggests a curve like the dotted 

one sketched over the nine classes.  This curve is the graph of some function, 

which is called a continuous probability density function (PDF). Some of the 
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PDFs of model parameters used in hydrology simulation are (Paul, 2003; Binley 

et al., 1991; Manache and Melching, 2004; Melching and Bauwens, 2001; and 

Yu et al., 2001): beta, normal, lognormal, triangular, exponential, and uniform. 

Further discussion on PDFs is found in Haan (2002). 
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Figure 2. Probability distribution and PDF of INTFW 

Another term used in probabilistic evaluation is the confidence interval, 

which is a measure of uncertainty that may be illustrated in two forms: using 

percentiles or calculating statistical moments (mean and standard deviation) of a 

selected variable. Percentile is defined by USGS as “a value on a scale of one 

hundred that indicates the percent of a distribution that is equal to or below it” 

(http://water.usgs.gov/waterwatch/ptile.html). For instance, the 90% confidence 

interval on model simulations is calculated using the difference between the 95th 

and 5th flow percentiles. Confidence intervals may be calculated using the mean 
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and standard deviation of a selected variable. For instance, Yu et al. (2001) 

calculated hourly confidence intervals using the mean +/- two standard deviations 

of streamflow simulations. Two questions arise when continuous confidence 

intervals are calculated: 

• how many of the observed data are within the confidence intervals? 

(Reliability); and, 

• how wide are the confidence intervals? (Sharpness). 

2.4 Uncertainty Analysis in Hydrologic Modeling 

This section reviews topics related to uncertainty analysis in hydrologic 

modeling. Five topics are illustrated: sources of uncertainty; uncertainty methods; 

comparisons of uncertainty analysis methods; evaluation of combined effects of 

uncertainties on model results; and, sensitivity/uncertainty studies of the HSPF 

model. 

2.4.1 Sources of Uncertainty 

Generally, every component of hydrologic models (input data, parameters, 

and structure) introduces uncertainty due to the lack of knowledge about real 

systems. Uncertainty in input data is due to natural variability, measurement 

inaccuracy, and errors in handling and processing data (Melching, 1995).  Model 

parameters and structure show uncertainty from model 

assumptions/approximations, scale effects, and variability of inputs and 

parameters in time and space (Gupta et al., 2005; Tung, 1996). The uncertainty 
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of input data on model results have been studied isolated from model parameter 

uncertainty (Souid, 1999). Georgakakos et al. (2004) pointed out that few have 

researched model structure uncertainty. Butts et al. (2004) declared that 

uncertainty evaluation is compensated among components (input data, model 

parameters, and model structure) because they are strongly interlinked.   

Many researchers believe spatial and temporal variability of precipitation 

data is the main source of input data uncertainty when rainfall-runoff models are 

applied (Vieux, 2002; Butts et al., 2004; Neary et al., 2004; Lopez et al., 2005). 

In addition, model parameter estimation is affected by a poor knowledge of 

precipitation input data (Andreassian et al., 2001).  Indeed, rainfall distribution 

must be a main feature when a hydrologic model is developed and evaluated 

(Hromadka II and McCuen, 1989). Osborn and Lane (1982) said that “for small 

watersheds, the input with greatest variability is rainfall. Therefore, the accuracy 

of streamflow simulation depends primarily on how well this variability can be 

defined in a specific case.” Aronica et al. (2005) pointed out that model structure 

and sensitivity of model parameters make a model more or less sensitive to 

rainfall temporal resolution. Assessments of rainfall input data uncertainty in 

hydrologic simulation have been done by various authors, Anagnostou and 

Krajewski (1999), Bronster and Bardossy (2003), Sharif et al. (2004), and 

Aronica et al. (2005). 

Model parameters are another component of hydrologic models that 

propagate uncertainty through model results. Watershed models are complex 

and highly parameterized. For instance, the HSPF model uses 26 parameters to 
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simulate flow in a pervious land segment without snow simulation (Bicknell et al., 

2001). So, more than one calibrated parameter set may be obtained with equal 

streamflow simulations (Doherty and Johnston, 2003; Jia, 2004) and high 

correlation between parameters would be expected. Both problems mean that 

the model and/or measured data may not be appropriate to represent the 

physical values (Draper and Smith, 1998). In addition to the non-uniqueness and 

correlation in model parameter sets, watershed models are simplifications of the 

physical world. Therefore, parameters and structure of watershed models 

produce uncertainty. Research on model parameter uncertainty in watershed 

models has been done by several authors, Dawdy and O’Donnell (1965), Wood 

(1976), Garen and Burges (1981), Beven and Binley (1992), Farajalla (1995), 

Senarath (2000), Beven and Freer (2001), Melching and Bauwens (2001), 

Benaman and Shoemaker (2004), Carpenter and Georgakakos (2004), and 

Sieber and Uhlenbrook (2005).  Some approaches to calculate structural 

uncertainty have been developed by Draper (1995), Wagener et al. (2003), and 

Butts et al. (2004); however, separation between structural and parametric 

uncertainty is not well understood (Wagener, 2003). 

Little research has examined the combined effects of input data and 

parameter uncertainties on model results (Souid, 1999). Assessments of 

combined uncertainty in both input data and model parameters have been done 

by Souid (1999), Butts et al. (2004), and Carpenter and Georgakakos (2004). 

Souid (1999) concluded that “the main source of the flood forecast uncertainty is 

due to uncertainties in rainfall model and not those in the catchment model.” 
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Carpenter and Georgakakos (2004) found an inverse correlation between 

watershed area and model uncertainty in streamflow simulations.  Butts et al. 

(2004) believe rainfall uncertainty values are less than parametric and structural 

uncertainties. 

2.4.2 Uncertainty Methods 

Uncertainty analysis methods used in hydrology simulation can be 

arranged in three groups: first-order methods, probabilistic point estimation 

methods, and Monte Carlo simulation and re-sampling methods.  The following 

sections describe each of these methods. 

2.4.2.1 First-order Methods 

Methods of uncertainty propagation that use Taylor series expansions are 

explained in this section. The first (mean) and second (variance) moments of the 

probability distributions are used to propagate and analyze uncertainty in first-

order methods (Morgan and Henrion, 1990). The mean-value first-order second-

moment (MFOSM) method and advanced first-order second-moment (AFOSM) 

method have been applied to rainfall-runoff models (Melching, 1995).  

MFOSM uses a Taylor series expansion of the model output that is 

truncated after the first order term (Melching 1995), making the uncertainty 

function become linear (Morgan and Henrion, 1990).  Melching (1995) shows 

some applications of MFOSM in evaluating uncertainty of hydrology simulations. 

Advantages and disadvantages in using this method are shown in Table 6.  The 
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application of the MFOSM method is simple and computationally efficient 

(Melching 1995). The main disadvantage is the poor calculation of the first and 

second moments of the probability distributions in nonlinear uncertainty functions 

(Melching, 1995). In rainfall-runoff models, the nonlinear assumption is difficult to 

justify because this kind of system is usually nonlinear (Gupta et al., 2005). 

The approach used in the AFOSM method comes from the work of 

Hasofer and Lind (1974). The AFOSM method uses a “likely” point in the 

parameter space, instead of the mean used in the MFOSM method (Gupta et al., 

2005). The mean and variance of the uncertainty function are approximated 

using a Taylor series truncated after the first order term at the “likely” point on the 

failure surface (Melching, 1992). The AFOSM method is applied to nonlinear 

functions and maintains the simplicity of the MFOSM method (Tung, 1996). 

Advantages and disadvantages of this method are shown in Table 6.  An 

application of the AFOSM method in assessing rainfall-runoff uncertainty can be 

found in Melching (1992). 
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Table 6. Advantages and disadvantages of uncertainty analyses methods 
(Morgan and Henrion, 1990; Melching, 1995; Tung, 1996;  
Christiaens and Feyen, 2002; Haan, 2002) 

Method Advantages Disadvantages 
MFOSM Simple numerical 

calculations; does not require 
knowledge of the PDF of 
stochastic variables 

AFOSM Calculations are simple and 
straightforward; can be 
applied to non-normal and 
correlated random variables; 
can be applied to non-linear 
functions 

Rosenblueth Calculations are simple and 
direct 

Harr More computationally efficient 
than the Rosenblueth method 

MCS Simple structure of the 
computation algorithm; used 
in complex/nonlinear models; 
computational complexity is 
linear 

LHS Number of runs can be fewer 
than MCS 

Restricted to linear models with 
small uncertainties; input 
parameters are statistically 
independent; tails of output 
distribution are not characterized; 
non-invariability of the 
performance function 
Determination of the “likely” point 
is usually hard 

Restricted to linear models; 
computationally impractical for 
large number of uncertain 
variables; inadequate for 
evaluating extreme percentiles; 
restricted to low coefficient of 
variation 
Same disadvantages as the 
Rosenblueth method; limited to 
symmetrical distributions; 
sometimes the uncorrelated and 
standardized coordinates are 
calculated out of the parameter 
bounds 
Time consuming at high levels of 
accuracy; results are not in 
analytical form 

Results are not in analytical form 
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2.4.2.2 Probabilistic Point Estimate Methods (PPEMs) 

The concept of PPEMs was originated by Rosenblueth (1975). A PPEM 

propagates the parameter uncertainty by performing point estimations of the 

function without calculating the derivatives of the function (MFOSM and AFOSM 

methods). Selected point estimations of the function are calculated using 

statistical moments (mean, variance) of the function instead of computing the 

entire PDF of the function (Monte Carlo simulation).  

Rosenblueth (1975) proposed a PPEM for handling symmetric and 

correlated stochastic input variables. In 1981 Rosenblueth extended the 

previous method to deal with non-symmetrical random variables.  The 

Rosenblueth method approximates a random variable with probability distribution 

function by two points, determined by the first three moments of the random 

variable. Using N random variables, a total of 2N possible solutions are produced 

in the parameter space. This exponential equation of possible solutions makes 

the method computationally impractical for large N random variables (Haan, 

2002). Advantages and disadvantages of using the Rosenblueth method are 

shown in Table 6.  Applications of this method in watershed hydrology are found 

in Yu et al. (2001), Binley et al. (1991), and Rogers et al. (1985).   

The Rosenblueth method was modified by Harr (1989) to reduce the 

number of evaluations from 2N to 2N. Harr (1989) developed a PPEM using the 

principal component matrix theory.  This method considers the mean, standard 

deviation, and correlation of the parameters evaluated. Figure 3 shows a 

schematic of the Harr method. 
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Figure 3. Schematic of the Harr method 

The Harr method propagates the parameter uncertainty through model 

outputs by performing two point estimations of the parameter space.  The 

correlation matrix of parameters, C, is decomposed as 

C = eλeT 
(5)  

where e = eigenvector matrix; λ = diagonal eigenvalue matrix; eT = transpose of 

eigenvector matrix;. Thus, someone using Harr’s method must generate the 

correlation matrix of selected parameters and then compute, using mathematical 

programs such as Matlab, the eigenvector matrix and the diagonal eigenvalue 

matrix. The uncorrelated and standardized coordinates can be calculated by 

x+ = µ + n *σ *ei i  (6a) 
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x− = µ − n *σ *ei  (6b) 

where µ = vector of the expected values of the parameter; n = number of 

parameters; σ = diagonal matrix of the standard deviation of the parameters; and 

ei = eigenvector for the eigenvalue λi. Finally, based on the two coordinates 

selected along each eigenvector (equations 6a and 6b), the user must compute 

the corresponding model output values. For instance, this research used 12 

HSPF parameters; thus 24 coordinates were calculated and 24 model outputs 

were generated for each simulated day. Then, the 95th and 5th percentiles of 

these 24 model outputs were calculated to generate the 90% certainty bounds of 

model outputs. 

A drawback of the Harr method is that the uncorrelated and standardized 

coordinates may fall outside the parameter bounds (Christian and Baecher, 

2002). In this study, when a coordinate was outside the pre-established HSPF 

parameter range, the closest parameter limit was used in instead of the outside 

value. Table 6 shows the advantages and the disadvantages of the Harr method. 

An application of this method in simulating watershed hydrology is found in Yu et 

al. (2001). 

2.4.2.3 Monte Carlo Simulation and Re-sampling Methods 

The origination of the Monte Carlo method is credited to Metropolis and 

Ulam, who wrote a paper entitled “The Monte Carlo Method” in 1949.  The idea 

of the method is to compute an empirical probability distribution of the model 

output using random values for the input variables sampled from their probability 
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distribution.  Detailed information on Monte Carlo simulation is found in Ronen 

(1988), Morgan and Henrion (1990), and Sobol’ (1994). The Monte Carlo 

simulation is the best known uncertainty method, and simplest way of sampling 

the entire range of likely observations of the system being studied (Morgan and 

Henrion, 1990). Melching (1995) declared that the Monte Carlo method “it may 

be the only method that can estimate the CDF and PDF of Z for cases with highly 

nonlinear and/or complex system relationships.” The Monte Carlo simulation 

involves five steps: 

1. generate probability distributions of selected model parameters (e.g., 

normal, triangular, beta, etc); 

2.  calculate a random value from the parameter’s distributions; 

3. evaluate the model using the random value calculated in step 2;  

4. repeat steps 2 and 3  many times; and 

5. analyze the model outputs (e.g., cumulative distribution function - CDF, 

percentiles, mean, standard deviation, etc). 

The Monte Carlo simulation has been applied to study the uncertainty of 

forcing input data and model parameters in computer models of watershed 

hydrology (Melching, 1995; Carpenter and Georgakakos, 2004).  Table 6 shows 

the advantages and the disadvantages of the Monte Carlo method. Melching 

(1995) pointed out that “for complex, nonlinear models with many uncertainty 

basic variables, however, the number of simulations (thus the computer time) 

necessary to achieve an accurate estimate may become prohibitive.” Increasing 

of computer processing speeds makes computations more tractable. Monte 
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Carlo method results have been used as a baseline when comparisons with 

other uncertainty methods have been done (Binley et al., 1991; Melching, 1992; 

Melching, 1995; Yu et al., 2001). 

An alternative to selecting the values of input variables is the Latin 

Hypercube Sampling, LHS (McKay et al., 1979).  The LHS method is a stratified 

sampling approach similar to the Monte Carlo simulation (Manache and 

Melching, 2004). The advantage of this approach is that random samples are 

represented from all the ranges of possible values in a fully stratified manner, 

thus giving insight into the tails of the probability distributions (McKay et al., 

1979). Table 6 shows the advantages and the disadvantages of the LHS. 

Melching (1995) reported results of an application of LHS to the HEC-1 model. 

Chu (2003) analyzed the parameter uncertainty of the Soil and Water 

Assessment Tool (SWAT) model using the Monte Carlo simulation based on an 

LHS scheme.  Manache and Melching (2004) applied the LHS to a water quality 

model called DUFLOW. Melching and Bauwens (2001) evaluated the LHS in 

coupled nonpoint source and stream water-quality models, which were used to 

simulate dissolved oxygen. Yu et al. (2001) examined the uncertainty of model 

output from a distributed rainfall-runoff model using LHS. 

2.4.3 Comparisons of Uncertainty Analysis Methods  

This section reviews comparisons of uncertainty analysis methods on 

hydrologic modeling. Garen and Burges (1981) evaluated parameter uncertainty 

for a modified version of the Stanford Watershed Model (predecessor of HSPF) 
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using the Monte Carlo simulation and the MFOSM method.  Mean and standard 

deviations were computed in both methods. Values of mean and standard 

deviations were underestimated by MFOSM.  For extreme conditions (storms), 

the model responded in a high nonlinear fashion, and the MFOSM method gave 

poor results. 

Binley et al. (1991) assessed the parameter uncertainty in the Institute of 

Hydrology distributed model (IHDM) using the Rosenblueth and Monte Carlo 

simulation methods. The Rosenblueth method required fewer simulation runs to 

calculate uncertainty bounds than in the Monte Carlo method due to the non-

linearity of the response function considered by the Rosenblueth method.  The 

Monte Carlo method was recommended if the probability distribution is expected 

to be highly skewed. 

Melching (1992) evaluated the AFOSM, the MFOSM, and Monte Carlo 

approaches for two rainfall-runoff event models, the Flood Hydrograph Package 

(HEC-1) and the Australian Runoff Routing Program (RORB).  The AFOSM 

approach overcomes the problems of non-linear systems and extreme failure 

events shown by MFOSM. In addition, AFOSM is simpler than the Monte Carlo 

simulation and similar results were achieved by both the AFOSM and Monte 

Carlo simulations. 

Melching and Bauwens (2001) employed the LHS and the MFOSM 

methods to calculate parameter uncertainty of coupled nonpoint source and 

stream water quality models.  They found that only six out of 53 parameters 

considerably affected the uncertainty in simulated dissolved oxygen 
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concentrations. The LHS and MFOSM approaches identified the same key 

parameters. Haan and Skaggs (2003) used the first-order approximation 

analysis (FOA) and the Monte Carlo simulation to evaluate parameter uncertainty 

on the DRAINMOD model, and both methods yielded similar results. 

Yu et al. (2001) compared four methods - the Monte Carlo simulation, 

LHS, Rosenblueth’s point estimation method (RPEM), and Harr’s point 

estimation method (HPEM) - to estimate uncertainty of model output for a 

distributed rainfall-runoff model. Monte Carlo simulation and LHS showed similar 

results. The LHS approach used a relatively small number of simulations 

compared to the Monte Carlo simulation. The RPEM and HPEM approaches 

demonstrated different results than the Monte Carlo simulation, due to the small 

number of model parameters analyzed (three). 

2.4.4 Evaluation of Combined Effects of Uncertainties on Model Results  

Few researchers have considered the combined effects of uncertainties 

on model results (Souid, 1999). Souid (1999) evaluated uncertainties of a rainfall 

model and runoff model using the Monte Carlo method, and found that “the main 

source of the flood forecast uncertainty is due to uncertainties in the rainfall 

model and not those in the catchment model.” 

Gourley and Vieux (2003) evaluated the impact of uncertainties in input 

radar-rainfall data on streamflow simulations in an Oklahoma watershed.  They 

studied the model performance with different precipitation inputs (50%, 75%, 

100%, 133%, and 200% of observed values) and model parameter uncertainty 
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using the Generalized Likelihood Uncertainty Estimation (GLUE) method.  The 

authors recommended separation of the error associated with rainfall data and 

model parameters to determine the statistical significance of each component. 

2.4.5 Sensitivity/Uncertainty Studies of the HSPF Model 

This section discusses a reviewing of sensitivity and/or uncertainty studies 

of the HSPF model (see Table 2 for HSPF parameter definition). While the HSPF 

model has been extensively and successfully tested in different countries since 

1980, little work has been done to quantify the effect of land cover datasets, 

evapotranspiration bias, rainfall spatial variability, channel hydraulic variability 

(FTABLE database), and parameter uncertainty on streamflow simulations.  

Garen and Burges (1981) evaluated parameter error propagation of the 

SWM, which is the hydrology predecessor to the HSPF model. They assessed 

error bounds of channel inflow hydrographs for several storm events using two 

uncertainty approaches, first-order uncertainty analysis and Monte Carlo 

analysis.  The most sensitive parameters were the raingage scaling factor (K1) 

and the upper zone storage nominal capacity (UZSN).  The authors pointed out 

that the first-order uncertainty analysis did not perform satisfactorily under 

extreme conditions (a highly nonlinear response of the model) or coefficients of 

variation greater than 0.25 for most sensitivity parameters.  

Jacomino and Fields (1997) performed a sensitivity analysis of thirteen 

HSPF hydrologic parameters. The AGWRC and AGWS parameters showed the 

greatest sensitivity. The degree of saturation in the lower zone soil moisture 
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(LZSN, LZS), the volume of the upper soil moisture zone (UZSN, UZS) and the 

rate infiltration (INFILT) were less significant. The remaining parameters had no 

detectable effect on model results. 

Fontaine and Jacomino (1997) evaluated the sensitivity of HSPF 

parameters for simulating flow and sediments at the hillslope and watershed 

levels. In addition, HSPF parameters were evaluated for normal and flood flow 

scenarios. Table 7 shows the most sensitive HSPF parameters for streamflow 

simulation found by the authors. 

Table 7. The most sensitive HSPF parameters for streamflow simulation  
(Fontaine and Jacomino, 1997) 

Flow Scenario Hillslope Level Watershed Level 
Normal AGWRC AGWRC 

Flood LZS, AGWRC, LZSN, 
and UZSN LZS, AGWRC, and LZSN 

Young (2000) tested the effect of rainfall spatial resolution on the HSPF 

model using radar and raingage data in the Little Washita River experimental 

watershed, Oklahoma. In addition, the author evaluated the error variance in 

radar precipitation data, finding high uncertainty for both hydrology and water 

quality simulations. He concluded that the hydrology simulation for this 600-km2 

watershed with a high density of quality raingages was insensitive to rainfall 

spatial resolution; however, the use of raingage data showed high uncertainty 

when sediments and other water quality constituents were simulated. He 
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recommended evaluating the error propagation of rainfall through the model and 

the variability of other spatial properties (soils, land use).  

Al-Abed and Whiteley (2002) tested the HSPF model in a Canadian 

watershed and a sensitivity-index approach showed that the LZSN parameter 

was the most sensitive. Doherty and Johnston (2003) performed an uncertainty 

analysis of nine HSPF parameters (LZSN, UZSN, INFILT, BASETP, AGWETP, 

LZETP, INTFW, IRC, and AGWRC) using the parameter estimation (PEST) 

software. The most sensitive parameters were AGWRC and INFILT at the 

watershed outlet. In addition, the authors found a number of different parameter 

sets with the same fit between simulated and observed streamflows.  

Paul (2003) evaluated the effect of parameter uncertainty on the HSPF 

model to predict in-stream bacterial concentrations using Monte Carlo and First 

Order Analysis techniques. He pointed out that hydrologic parameters drive most 

of the parameter uncertainty in simulated in-stream bacterial concentrations. In 

addition, he concluded that the simulation of hydrologic processes must be 

accurate to make a reliable total maximum daily load.  

Jia (2004) investigated parameter uncertainties in the HSPF model 

applying the GLUE approach. An LHS technique was used to generate random 

multiple parameter sets. Seven hydrologic parameters were evaluated in this 

project (i.e., LZSN, INFILT, AGWRC, DEEPFR, UZSN, INTFW, and IRC) at the 

watershed level. After 50,000 HSPF runs, many acceptable parameter sets were 

identified by the GLUE approach. Information on the total runoff distribution was 

not available, and wide variations of the total runoff (surface runoff, interflow, and 
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baseflow) were considered acceptable. The author pointed out that many 

combinations in model parameter sets were equally acceptable (this is called 

“equifinality” by Beven, 2001) due to the accumulative effects of model structure 

errors, flow measure errors, and a lack of sufficient data (lack of runoff 

distribution data at hillslope level). 

Wu (2004) assessed the propagation of parameter uncertainty in both 

HSPF and CE-QUAL-W2 models using First-Order Error Analysis (FOEA). He 

pointed out that the uncertainty in parameters related to streamflow generation 

was the main source of variance in simulated nutrient loads. However, when 

simulated nutrient concentrations were analyzed, some parameters related to 

hydrologic processes have no significant effect. The author justified this 

difference by the non-linear relationship between pollutant loads and their 

concentrations. So, FOEA may not be an appropriate method to analyze 

propagation of parameter uncertainty in complex models.  Wu recommended 

more analyses between FOEA and Monte Carlo simulation. 

Diaz (2004) evaluated the HSPF model in a Caribbean island watershed 

(Puerto Rico). Based on the results of the sensitivity analysis, the HSPF 

parameters that most affected the streamflow prediction were AGWRC and 

INFILT. Diaz et al. (2007) assessed the effect of three land use/land cover 

datasets on HSPF streamflow simulations. Physical data from the Luxapallila 

Creek watershed, located in Alabama and Mississippi, were used to set up and 

evaluate model results. At daily levels, streamflow relative errors between -20.3% 

and 22.3% were calculated when the three datasets were compared. 
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CHAPTER III 

METHODOLOGY 

3.1 Study Area 

This study used physical data from the Luxapallila Creek watershed 

(Figure 4). The watershed flows through Fayette, Lamar, Marion, and Pickens 

counties in Alabama and into Lowndes and Monroe counties in Mississippi.  Near 

the outlet (USGS Station 02443500), the watershed has a drainage area of 1,801 

km2, an average basin slope of 2%, and average annual precipitation (1982 - 

2004) of 1,379 mm recorded at the Millport 2E weather station (Figure 5). 

Seasonal fluctuations in rainfall result in maximum river discharges from January 

to April and minimum discharges from August to September. Elevation in the 

study area ranges from 45 to 274 m mean sea level. The USGS Geographic 

Information Retrieval and Analysis System (GIRAS) land cover developed in the 

early 1980’s is distributed as 73% forest land, 20% agricultural land, 6% 

wetlands, and 1% other land types (barren, urban, and non-urban), (Figure 6). 
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Figure 4. Location of the Luxapallila Creek watershed 

Figure 5. Location of USGS and weather stations 
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Figure 6. Land cover distribution 

3.2 HSPF Model Setup 

The Luxapallila watershed model was set up with a standard set of 

procedures and data as might be used in any BASINS application to provide a 

HSPF input data file (uci file). Spatial and climatic time series databases, 

including land use, overland flow slope and length, reach characteristics, and 

detailed meteorological data are used as inputs to HSPF. 
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3.2.1 Segmentation of the Model 

The model was lumped using one basin area and one main channel 

because streamflow-gaging station data from only one station were available 

(USGS 2443500). Topographic data were created from the standard USGS 

Digital Elevation Models (DEMs), and the DEMs were also used to delineate the 

watershed boundaries in ArcView. The length and slope of overland flow and 

reach were calculated and kept constant throughout the simulations. Manning’s n 

roughness coefficients for overland flows were determined by literature review 

and were kept constant throughout the simulations. The watershed was 

partitioned into six pervious and one impervious land types (Table 8). 

Table 8. Pervious and impervious land types simulated 

Surface area Surface areaLand cover (km2) (%) 
Forest land 1316.9 73.1 

Agricultural land 360.0 20.0 
Barren land 2.5 0.1 

wetlands 104.4 5.8 
Urban land (pervious) 8.1 0.4 

Urban land (impervious) 8.1 0.4 
Water 1.5 0.1 

3.2.2 Data Sets Used 

Hourly precipitation data were NEXRAD stage IV data from the Earth 

Observing Laboratory web page (http://data.eol.ucar.edu/codiac/dss/id=21.093). 

Downloaded rainfall data were uncompressed and incorporated into input files by 

use of the Watershed Data Management (WDMUtil) software. Hourly potential 
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evapotranspiration, air temperature, dew point, wind speed, solar radiation, 

evaporation, and cloud cover values were obtained from the Haleyville station 

(Figure 5). The weather database for the Haleyville station was downloaded from 

the BASINS web site.  The model was run from 01/01/2002 through 12/31/2005. 

The model time step was hourly, but streamflow data were output daily to 

compare with observed data (USGS Station 02443500).  

3.3 Computational Experiment 

This study used a desktop computer with a 3.06GHz Xeon(TM) CPU and 

1.00 GB of RAM. A HSPF model of Luxapallila watershed was created using 

input weather data from 01/01/2002 to 12/31/2005. Input data from 2002 were 

used to “spin up” the model and limit the effect of initial condition values on the 

performance of uncertainty methods. This study was focused on developing 

HSPF certainty bounds under different scenarios. Model performance due to 

parameter uncertainty was accomplished using 12 HSPF parameters as a 

lumped modeling approach. Hydraulic property variability of the main channel 

was done using two different FTABLE databases (USGS versus RF1). 

Parameter uncertainty and rainfall spatial variability were evaluated using 12 

HSPF parameters and seven different sets of NEXRAD data (115, 109, 86, 58, 

29, 6, and 2 grid points). Two uncertainty methods were used in this study, the 

Monte Carlo and Harr methods. The Monte Carlo method using 12 HSPF 

parameters, USGS FTABLE, and a 115 NEXRAD rainfall grid set was taken as 
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the baseline for comparisons to the rest of the NEXRAD grid sets, RF1 FTABLE, 

and Harr method. Four scenarios were explored in this research (Table 9). 

Table 9. Scenarios evaluated 

Scenario Components 
Monte Carlo method + 12 HSPF parameters +Baseline USGS FTABLE + 115 NEXRAD grid points 

Hydraulic property Monte Carlo method + 12 HSPF parameters + RF1variability of the main FTABLE + 115 NEXRAD grid pointschannel 
Monte Carlo method + 12 HSPF parameters + 

Spatial rainfall variability USGS FTABLE + 109/86/58/29/6/2 NEXRAD grid 
points 
Harr method + 12 HSPF parameters + USGS Harr method FTABLE + 115 NEXRAD grid points 

3.3.1 Sources of Uncertainty 

This study evaluated three sources of uncertainty propagation on HSPF 

model results: hydrologic parameter uncertainty, hydraulic property variability of 

the main channel, and rainfall spatial variability. 

3.3.1.1 Hydrologic Parameter Uncertainty 

Parameter uncertainty was accomplished using 12 HSPF parameters 

(Table 10). The range of each HSPF parameter was extracted from the BASINS 

Technical Note 6 (USEPA, 2000).  
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Table 10. HSPF parameter ranges 

Parameter 
(unit) 

LZSN 

Definition 

Lower zone nominal soil 

Range 

50.8 -381.0 
(mm) 
INFILT 

moisture storage 
Index to infiltration 0.025 – 12.7 

(mm/hour) 
KVARY 
(1/mm) 
AGWRC 

capacity 
Variable groundwater 
recession 
Base groundwater 
recession 

0.0 – 127.0 

0.92 - 0.999 

DEEPFR 

BASETP 

Fraction of groundwater 
inflow to deep recharge 
Fraction of remaining 
evapotranspiration from 
baseflow 

0.0 - 0.5 

0.0 - 0.2 

AGWETP 

CEPSC  
(mm) 

Fraction of remaining 
evapotranspiration from 
active groundwater 
Interception storage 
capacity 

0.0 - 0.2 

0.0 – 10.2 

UZSN 
(mm) 
INTFW 
IRC 

Upper zone nominal soil 
moisture storage 
Interflow inflow parameter 
Interflow recession 

1.27 – 50.8 

1.0 - 10.0 
0.3 - 0.85 

LZETP 
parameter 
Lower zone 0.0 - 0.9 
evapotranspiration 
parameter 

3.3.1.2 Hydraulic Property Variability of the Main Channel 

The HSPF channel network consisted of one main channel. The HSPF 

model required a tabular FTABLE with relationships among surface area, 

volume, and flow in a channel. The hydraulic properties of the main channel were 

characterized using two approaches: the BASINS reach file (RF1), and USGS 

cross sectional data at the watershed outlet (USGS station 2443500). Table 11 
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describes the RF1 database. In general, the RF1 dataset is coarse, not updated 

(data achieved in 1982), and may be used as an initial evaluation on watershed 

simulation. Table 12 shows the FTABLE results using the RF1 data. This Table 

was automatically created in the HSPF-BASINS interface.  

Table 11. Description of the RF1 database (USEPA, 2007) 

Characteristic Description 
File format ArcInfo coverage 
Source EPA 
Scale 1:500,000 
Restrictions Public domain 
Data achieved 1982 
Data type Vector 
Map units Decimal degrees 
Projection Geographic 
Remarks “Data consist of mean annual flow and 7Q10 low flow 

estimations made at the downstream ends of more than 
60,000 transport reaches coupled to an estimate of the time-
of-travel velocity for the full length of those same reaches 
under each of those two flow regimes… Streamflow data 
from the USGS Daily Values File for the 4112 gages were 
used to develop estimates of mean annual flow and 7Q10 
flow at the gage sites... EPA has advised users (1983 EPA 
memo to Regions, States and other RF1 users), that the 
overall flow estimation methodology used in producing the 
RF1 flow estimates was not designed to produce accurate 
results on start reaches or small ungaged tributaries, nor in 
estuaries or ungaged coastal streams…EPA added that use 
of these flow values may benefit from an initial evaluation on 
a basin-wide.” 
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Table 12. FTABLE data using the RF1 data 

Depth 
(m) 

Surface 
area (km2) 

Volume 
(km3) 

Outflow 
(m3/s) 

0.0 0.0 0.0 0.0 
0.3 2.5 6.6 7.6 
2.6 2.6 67.2 353.4 
3.3 2.7 84.4 512.2 
4.1 8.0 149.4 642.6 
4.9 8.1 214.9 1170.4 

83.9 15.3 9444.2 405438.5 
162.9 22.5 24355.5 1503105.3 

Table 13 depicts the FTABLE results using the USGS cross sectional 

data. The USGS has collected 240 surface water measurements (water depth, 

channel width, and flow) since 1929 to 2006 at station 2443500. All 2140 surface 

water measurements were clustered by selected percentiles (10th, 20th, 30th, 

40th, 50th, 60th, 70th, 80th, 90th, 95th, 98th, 99th and 100th percentiles) and 

used to calculate the FTABLE columns. Surface area was calculated using the 

channel width and length. Channel length was calculated as 70 km using the 

DEMs. Hydraulic properties of the channel at 30.5 m water depth were 

extrapolated using the previous eight values of the FTABLE in order to ensure 

that all computed water depths fell within the FTABLE data range. 
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Table 13. FTABLE data using the USGS cross sectional data 

Depth Surface Volume Outflow 
(m) area (km2) (km3) (m3/s) 
0.0 0.0 0.0 0.0 
1.9 1.2 22.6 4.2 
2.1 1.7 34.9 5.8 
2.2 1.9 41.4 9.0 
2.3 2.2 51.1 13.9 
2.5 2.3 57.0 19.1 
2.7 2.8 74.3 27.0 
2.8 3.1 86.9 37.5 
3.2 3.3 105.1 61.4 
4.0 5.3 211.5 213.3 
5.4 8.7 464.0 457.0 
7.3 14.9 1081.6 667.0 
8.5 15.8 1342.6 744.5 
9.1 19.4 1733.6 1027.9 

30.5 72.8 22200.2 4074.5 

Figure 7 depicts water depth versus volume of reach using the USGS data 

and RF1 data. The curves match relatively closely for values less than 200 km3. 

The USGS values were higher than the RF1 data for values larger than 200 km3. 

Therefore, the USGS data showed a reservoir type and the RF1 data depicted a 

channel form. Figure 8 depicts water depth versus outflow at the watershed 

outlet using the USGS data and RF1 data. Outflow values using the RF1 data 

were consistently higher than USGS data. In general, use of USGS data resulted 

in higher water retention times than RF1 data.  
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Figure 7. Water depth versus volume of reach using the USGS data and RF1 
data (Y axis on a logarithmic scale) 
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Figure 8. Water depth versus outflow at the watershed outlet using the USGS 
data and RF1 data (Y axis on a logarithmic scale) 
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3.3.1.3 Rainfall Spatial Variability  

Hourly NEXRAD Stage IV rainfall data at a 4 km resolution were 

downloaded from the Earth Observing Laboratory web page 

(http://data.eol.ucar.edu/codiac/dss/id=21.093). The rainfall data period 

downloaded was from 01/01/2002 to 12/31/2005. Rainfall spatial variability was 

characterized using seven sets of NEXRAD grid points (115, 109, 86, 58, 29, 6, 

and 2 grid points). Each grid point of the set had the same weight (1/115, 1/109, 

1/86, 1/58, 1/29, 1/6, and 1/2). The time series of 115 radar grid points (4 km x 4 

km pixel resolution) were considered as the “ground truth” rainfall pattern (Figure 

9). The remaining grid point sets were selected randomly from one to 115 using 

the Research Randomizer, V3.0 (http://www.randomizer.org/form.htm), with each 

grid point in a set remaining unique. 

Rainfall spatial variability across the seven NEXRAD grid point sets was 

quantified using the coefficient of variation (CV) at daily levels. The CV of 115 

NEXRAD grid points was used as a baseline to calculate daily relative errors as 

follows: 

σCV = − 
(7)  

X 

CV − CVNEXRAD set 115 NEXRAD setRECV = *100 (8)  
CV115 NEXRAD set 

− 
where σ was the standard deviation of the data, X  was the mean of the data, 

RECV was the relative error, CVNEXRAD set was the coefficient of variation of 109, 
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86, 58, 29, 6, or 2 NEXRAD set, CV115 NEXRAD set was the coefficient of variation of 

115 NEXRAD set. 

Figure 9. 115 NEXRAD grid points used in Luxapallila Creek HSPF  
simulations 

NEXRAD rainfall data were recorded for 386 days out of 1096 days 

between 01/01/2003 and 12/31/2005, and the analysis of rainfall spatial 

variability was focused on these 386 days. 
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3.3.2 Uncertainty Methods 

This research explored the performance of two uncertainty methods: the 

Monte Carlo and Harr methods. 

3.3.2.1 Monte Carlo Method 

The first step in the Monte Carlo simulation (MCS) was to determine the 

probability density functions (PDFs) for the input parameters considered in the 

study. Due to the lack of data to estimate the PDFs, all parameters were 

assigned a triangular distribution, which is defined by the lowest, most probable, 

and highest values. Most probable values were extracted from an 18-year model 

calibration of the Luxapallila Creek watershed (McAnally et al., 2006), (Table 14). 

Highest and lowest values were assigned based on the EPA BASINS Technical 

Note 6 (USEPA, 2000), (Table 10). 

Table 14. Most probable values of the HSPF parameters in the Luxapalilla  
  Creek model 

Parameter (unit) Most Probable Value 
LZSN (mm) 228.6 

INFILT (mm/hour) 2.8 
KVARY (1/mm) 45.7 

AGWRC 0.997 
DEEPFR 0.2 
BASETP 0.04 
AGWETP 0.025 

CEPSC (mm) 3.8 
UZSN (mm) 27.9 

INTFW 3.0 
IRC 0.6 

LZETP 0.1 
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Five thousand random numbers from the 12 HSPF parameter’s 

distributions (triangular distributions) were generated using the Matlab software. 

Then, the HSPF program was run using the selected random numbers from 

01/01/2002 to 12/31/2005. Finally, evaluation of streamflow simulations was 

accomplished (stability results, 95th and 5th percentiles) at daily levels with 5,000 

streamflow simulations for each simulation day. 

To determine the number of realizations (stability results) sufficient to 

analyze the uncertainty of streamflow simulations, the values of absolute relative 

errors (ARE) of simulated daily flows were calculated as 

ARE = 
N 

i 1 
∑
= 

Qi Qi− +1

 


Qi (9)  

where N is the number of Monte Carlo simulations; Qi is the simulated daily flow 

for run i. For instance, in this study, 1,096 daily HSPF streamflows from 

01/01/2003 through 12/31/2005 were used; this means that 1,095 ARE results 

were calculated for each Monte Carlo simulation. 

3.3.2.2 Harr Method 

The first step in the Harr method was to calculate the correlation matrix, 

mean, and standard deviation of the 12 HSPF parameters evaluated. The 

USEPA developed a database of HSPF model parameters (USEPA, 2006a). 

This database was called HSPFParm and contains HSPF parameter values of 

several model applications in the U.S. Twenty eight sets of parameter values 
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were used to compute the correlation matrix, mean, and standard deviation of 

selected parameters. Table 15 depicts mean and standard deviation values of 

selected HSPF parameters. Table 16 shows the correlation matrix of selected 

HSPF parameters. The eigenvector and eigenvalue matrices from the correlation 

matrix were calculated using Matlab (Table 17). 

Table 15. Mean and standard deviation values of selected HSPF parameters 

StandardParameter (unit) Mean Deviation 
LZSN (mm) 146.7 48.0 

INFILT (mm/hour) 2.0 1.0 
KVARY (1/mm) 24.3 25.4 

AGWRC 0.97 0.02 
DEEPFR 0.04 0.1 
BASETP 0.02 0.02 
AGWETP 0.02 0.04 

CEPSC (mm) 0.3 0.7 
UZSN (mm) 14.8 7.3 

INTFW 2.9 1.7 
IRC 0.7 0.2 

LZETP 0.3 0.3 

Table 16. Correlation matrix of selected HSPF parameters 

LZSN INFILT KVARY AGWRC DEEPFR BASETP 
LZSN 1.0 0.1 0.6 -0.2 -0.1 0.2 
INFILT 0.1 1.0 0.1 0.2 0.5 -0.1 
KVARY 0.6 0.1 1.0 -0.3 0.0 0.3 
AGWRC -0.2 0.2 -0.3 1.0 0.1 -0.6 
DEEPFR -0.1 0.5 0.0 0.1 1.0 -0.1 
BASETP 0.2 -0.1 0.3 -0.6 -0.1 1.0 
AGWETP 0.3 0.1 0.5 -0.2 0.1 0.7 
CEPSC 0.0 0.6 -0.3 0.1 0.0 0.2 
UZSN 0.4 0.1 0.6 0.0 -0.1 0.0 
INTFW 0.1 0.0 0.3 -0.1 -0.3 -0.1 
IRC -0.3 -0.2 -0.2 -0.1 -0.2 -0.2 
LZETP 0.4 0.3 0.6 -0.5 0.0 0.2 
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Table 16. Correlation matrix of selected HSPF parameters (continued) 

AGWETP CEPSC UZSN INTFW IRC LZETP 
LZSN 0.3 0.0 0.4 0.1 -0.3 0.4 
INFILT 0.1 0.6 0.1 0.0 -0.2 0.3 
KVARY 0.5 -0.3 0.6 0.3 -0.2 0.6 
AGWRC -0.2 0.1 0.0 -0.1 -0.1 -0.5 
DEEPFR 0.1 0.0 -0.1 -0.3 -0.2 0.0 
BASETP 0.7 0.2 0.0 -0.1 -0.2 0.2 
AGWETP 1.0 0.3 0.1 -0.1 -0.5 0.1 
CEPSC 0.3 1.0 0.0 -0.1 -0.5 0.0 
UZSN 0.1 0.0 1.0 0.4 -0.2 0.4 
INTFW -0.1 -0.1 0.4 1.0 0.2 0.6 
IRC -0.5 -0.5 -0.2 0.2 1.0 0.1 
LZETP 0.1 0.0 0.4 0.6 0.1 1.0 

Table 17. Matrix of eigenvalues and eigenvectors of selected HSPF  
parameters 

Eigenvalues 
3.3 2.3 1.9 1.3 1.1 0.7 

Parameter Eigenvectors 
LZSN 0.4 0.0 0.0 0.3 0.1 -0.7 
INFILT 0.1 -0.4 0.5 -0.3 0.0 -0.2 
KVARY 0.5 0.1 0.1 0.2 0.3 0.1 
AGWRC -0.3 -0.2 0.4 0.4 0.0 0.1 
DEEPFR 0.0 -0.3 0.2 -0.2 0.7 0.2 
BASETP 0.3 -0.1 -0.5 -0.2 -0.1 0.1 
AGWETP 0.3 -0.3 -0.3 0.1 0.1 0.3 
CEPSC 0.1 -0.5 0.1 -0.2 -0.5 -0.1 
UZSN 0.3 0.1 0.3 0.4 -0.1 0.2 
INTFW 0.2 0.4 0.3 -0.2 -0.4 0.4 
IRC -0.2 0.4 0.0 -0.4 0.1 -0.2 
LZETP 0.4 0.2 0.2 -0.4 0.0 -0.1 
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Table 17. Matrix of eigenvalues and eigenvectors of selected HSPF  
  parameters (continued) 

Eigenvalues 
0.5 0.4 0.3 0.2 0.1 0.0 

Parameter Eigenvectors 
LZSN 0.1 -0.1 -0.4 -0.2 -0.2 0.1 
INFILT 0.1 0.1 0.3 0.3 -0.3 0.4 
KVARY 0.2 -0.2 0.4 0.3 -0.2 -0.5 
AGWRC 0.5 0.0 -0.3 0.3 0.3 -0.1 
DEEPFR -0.2 0.1 -0.4 -0.2 -0.1 -0.2 
BASETP 0.0 0.3 -0.4 0.6 0.0 0.0 
AGWETP 0.5 0.0 0.1 -0.4 0.0 0.3 
CEPSC 0.0 0.1 0.0 -0.3 0.0 -0.6 
UZSN -0.3 0.7 0.1 -0.1 0.1 0.1 
INTFW 0.0 -0.3 -0.4 -0.1 -0.4 0.1 
IRC 0.5 0.5 0.0 -0.2 -0.1 -0.2 
LZETP 0.0 -0.2 0.0 0.0 0.8 0.0 

The model runs required to solve the system were 2*number of 

parameters. In this study, 12 parameters were evaluated; thus 24 model HSPF 

runs were required to solve the system. Using Tables 15 and 17, and equations 

6a and 6b (see section 2.4.2.2 in methodology), the coordinates of the 24 

intersection points by each HSPF parameter were calculated (Table 18). This 

Table shows that 16% of the data were outside of the pre-established parameter 

ranges (highlighted). Data out of ranges were changed by the closest limit value 

(Table 19). Finally, using these 24 sets of parameters to determine the 95th and 

5th percentiles of model outputs, the 90% certainty bounds (95th-5th percentiles) 

were calculated at daily levels from 01/01/2003 to 12/31/2005.  
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Table 18. Coordinates of the 24 intersection points by each HSPF parameter 

Eigenvalue 3.3 2.3 1.9 1.3 

Parameter X+  X- X+  X- X+  X- X+  X-

LZSN 8.171 3.381 5.962 5.591 5.915 5.638 7.794 3.759 
INFILT 0.0942 0.0645 0.0326 0.126 0.145 0.0141 0.0366 0.122 
KVARY 2.574 -0.659 1.442 0.473 1.183 0.733 1.482 0.434 
AGWRC 0.955 0.991 0.961 0.985 0.998 0.948 0.943 
DEEPFR 0.0356 

-0.00656 
-0.0143 

0.0470 -0.0658 0.148 
1.003 

-0.0223 
0.124 -0.0410 -0.0394 0.122 

BASETP 0.0480 0.00803 0.0334 0.0637 0.00474 0.0367 
AGWETP 0.0662 -0.0160 0.0646 -0.0116 0.0619 0.0325 0.0178 
CEPSC 0.0202 0.00573 -0.0375 0.0635 0.0228 0.00317 -0.00571 0.0317 
UZSN 0.898 0.266 0.686 0.478 0.878 0.286 0.985 0.179 
INTFW 4.150 

-0.103 

1.692 4.974 0.868 4.637 1.204 2.037 3.805 
IRC 0.642 0.849 0.967 0.524 0.753 0.737 0.560 0.931 
LZETP 0.627 0.430 0.0944 0.470 0.0539 -0.0728 0.597 

Table 18. Coordinates of the 24 intersection points by each HSPF parameter  
(continued) 

Eigenvalue 1.1 0.7 0.5 0.4 
Parameter X- X+  X- X+  X- X+  X-X+ 

LZSN 6.205 5.348 1.070 

 

 

 

 
 
 

 
 

 

 

 

 

 

 

 

 

10.483 6.525 5.027 5.074 6.478 
INFILT 0.0786 0.0800 0.0551 0.104 0.0970 0.0616 0.0903 0.0684 
KVARY 1.931 -0.0160 1.371 

1.009 
0.544 1.528 0.387 0.327 1.589 

AGWRC 0.970 0.976 0.983 0.964 0.938 0.971 0.975 
DEEPFR 0.279 -0.197 0.107 -0.0248 -0.0233 0.106 0.0674 0.0152 
BASETP 0.0133 0.0281 0.0285 0.0130 0.0234 0.0181 0.0489 
AGWETP 0.0341 0.0161 0.0661 -0.0159 0.0902 -0.0400 0.0226 0.0276 
CEPSC -0.0405 0.0664 0.00107 0.0249 0.0116 0.0144 0.0244 0.00157 
UZSN 0.518 0.646 0.754 0.410 0.315 0.849 1.276 
INTFW 

-0.008 

1.000 
0.417 

1.018 
0.714 

-0.112 
5.128 5.425 3.088 2.754 1.434 4.408 

IRC 0.792 0.699 0.659 0.831 0.473 0.491 
LZETP 0.268 0.256 0.179 0.345 0.288 0.236 0.128 0.397 
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Table 18. Coordinates of the 24 intersection points by each HSPF parameter  
(continued) 

Eigenvalue 0.3 0.2 0.1 0.0 
Parameter X+  X- X+  X- X+  X- X+  X-

LZSN 3.203 8.349 4.748 6.804 4.427 7.126 6.127 5.425 
INFILT 0.115 0.0436 0.125 0.0340 0.0429 0.116 0.138 0.0211 
KVARY 2.464 1.826 0.090 0.198 1.717-0.548 2.796 
AGWRC 0.954 0.993 0.994 0.953 0.992 0.954 0.964 0.983 
DEEPFR 

-0.880 

-0.104 
-0.013 

0.186 0.107 0.00841 0.0741-0.025 
-0.031 

-0.031 
-0.015 

0.112 
BASETP 

-0.029 
0.0545 0.0726 0.0206 0.0209 0.0174 0.0241 

AGWETP 0.0369 0.0134 0.0811 0.0280 0.0223 0.0655 
CEPSC 0.0158 0.0101 0.0404 0.0107 0.0152 0.0691 
UZSN 0.643 0.521 0.459 0.705 0.664 0.500 0.679 0.485 
INTFW 

-0.015 
-0.043 

0.542 5.299 2.506 3.336 0.613 5.228 3.267 2.575 
IRC 0.749 0.742 0.667 0.824 0.680 0.811 0.656 0.834 
LZETP 0.218 0.307 0.240 0.285 0.933 

 

 
 

 

 

 

 
 
 

 

 

 

 

 

 

 

 

 

-0.409 0.272 0.252 

Table 19. Corrected coordinates of the 24 intersection points by each HSPF  
parameter 

Eigenvalue 3.3 2.3 1.9 1.3 

Parameter X+  X- X+  X- X+  X- X+  X-

LZSN 8.171 3.381 5.962 5.591 5.915 5.638 7.794 3.759 
INFILT 0.094 0.064 0.033 0.126 0.145 0.014 0.037 0.122 
KVARY 2.574 0.000 1.442 0.473 1.183 0.733 1.482 0.434 
AGWRC 0.955 0.991 0.961 0.985 0.998 0.948 0.999 0.943 
DEEPFR 0.036 0.047 0.000 0.148 0.124 0.000 0.000 0.122 
BASETP 0.048 0.000 0.008 0.033 0.000 0.064 0.005 0.037 
AGWETP 0.066 0.000 0.000 0.065 0.000 0.062 0.032 0.018 
CEPSC 0.020 0.006 0.000 0.063 0.023 0.003 0.000 0.032 
UZSN 0.898 0.266 0.686 0.478 0.878 0.286 0.985 0.179 
INTFW 4.150 1.692 4.974 1.000 4.637 1.204 2.037 3.805 
IRC 0.642 0.849 0.850 0.524 0.753 0.737 0.560 0.850 
LZETP 0.627 0.000 0.430 0.094 0.470 0.054 0.000 0.597 
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Table 19. Corrected coordinates of the 24 intersection points by each HSPF  
  parameter (continued) 

Eigenvalue 1.1 0.7 0.5 0.4 
Parameter X+  X- X+  X- X+  X- X+  X-

LZSN 6.205 5.348 1.070 10.483 6.525 5.027 5.074 6.478 
INFILT 0.079 0.080 0.055 0.104 0.097 0.062 0.090 0.068 
KVARY 1.931 0.000 1.371 0.544 1.528 0.387 0.327 1.589 
AGWRC 0.970 0.976 0.983 0.964 0.999 0.938 0.971 0.975 
DEEPFR 0.279 0.000 0.107 0.000 0.000 0.106 0.067 0.015 
BASETP 0.013 0.028 0.028 0.013 0.023 0.018 0.049 0.000 
AGWETP 0.034 0.016 0.066 0.000 0.090 0.000 0.023 0.028 
CEPSC 0.000 0.066 0.001 0.025 0.012 0.014 0.024 0.002 
UZSN 0.518 0.646 0.754 0.410 0.315 0.849 1.276 0.050 
INTFW 1.000 5.128 5.425 1.000 3.088 2.754 1.434 4.408 
IRC 0.792 0.699 0.659 0.831 0.850 0.473 0.850 0.491 
LZETP 0.268 0.256 0.179 0.345 0.288 0.236 0.128 0.397 

Table 19. Corrected coordinates of the 24 intersection points by each HSPF  
  parameter (continued) 

Eigenvalue 0.3 0.2 0.1 0.0 

Parameter X+  X- X+  X- X+  X- X+  X-

LZSN 3.203 8.349 4.748 6.804 4.427 7.126 6.127 5.425 
INFILT 0.115 0.044 0.125 0.034 0.043 0.116 0.138 0.021 
KVARY 2.464 0.000 1.826 0.090 0.198 1.717 0.000 2.796 
AGWRC 0.954 0.993 0.994 0.953 0.992 0.954 0.964 0.983 
DEEPFR 0.000 0.186 0.000 0.107 0.008 0.074 0.000 0.112 
BASETP 0.000 0.055 0.073 0.000 0.021 0.021 0.017 0.024 
AGWETP 0.037 0.013 0.000 0.081 0.028 0.022 0.066 0.000 
CEPSC 0.016 0.010 0.000 0.040 0.011 0.015 0.000 0.069 
UZSN 0.643 0.521 0.459 0.705 0.664 0.500 0.679 0.485 
INTFW 1.000 5.299 2.506 3.336 1.000 5.228 3.267 2.575 
IRC 0.749 0.742 0.667 0.824 0.680 0.811 0.656 0.834 
LZETP 0.218 0.307 0.240 0.285 0.933 0.000 0.272 0.252 

3.3.3 Performance Evaluation 

The overall effect of parameter uncertainty, hydraulic property variability of 

the main channel, and rainfall spatial variability through streamflow simulations 

was demonstrated calculating the 5th and 95th percentiles (90% certainty 

65 



www.manaraa.com

 

 

 

 
 
 

 
 
 

 

bounds) of the Monte Carlo results. Two criteria were used to evaluate the 

HSPF 90% certainty bounds: 

• Reliability: the number or percentage of daily observed streamflows within 

the HSPF 90% certainty bounds; 

• Sharpness: the width of the HSPF 90% certainty bounds (minimum, 

median, and maximum values). 

The HSPF 90% confidence intervals were evaluated using daily observed 

flow data from 01/01/2003 to 12/31/2005 at the watershed outlet (USGS station 

02443500). Three percentile classes of observed flows developed by the USGS 

(http://water.usgs.gov/waterwatch/) were calculated to find the effect of model 

Reliability to above normal, normal, and below normal flows (Table 20). 

Table 20. Percentile classes of flow observed data 

Percentile classes Explanation 
>75th Above normal 

25th-75th Normal 
<25th Below normal 

In addition to the Reliability and Sharpness criteria, continuous 

hydrographs of 90% confidence bounds and observed data were plotted. 

Scatterplots were drawn of 5th and 95th flow percentiles using the baseline 

scenario as compared to the remaining scenarios.  
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Evaluation of the Harr method was accomplished in the same form for the 

remaining scenarios (calculating the 95th and 5th percentiles of model outputs, 

and Reliability and Sharpness criteria). To compare the baseline scenario results 

versus the remaining scenario results (see Table 9 for scenario description), the 

relative error of Reliability (REReliability) and Sharpness (RESharpness) criteria values 

was calculated as follows: 

(Re liability) − (Re liability)selected scenario baselineRERe liability (%) = *100  (10)(Re liability)baseline 

(Sharpness) − (Sharpness)selected scenario baselineRESharpness (%) = *100  (11)(Sharpness)baseline 
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CHAPTER IV 

RESULTS 

4.1 Sources of Uncertainty 

This section shows results of three sources of uncertainty propagation on 

streamflow simulations using the Monte Carlo method: parameter uncertainty, 

hydraulic property variability of the main channel, and spatial rainfall variability. 

See Table 9 in methodology for scenario description. 

4.1.1 Baseline Scenario 

The baseline scenario depicts results of the Monte Carlo simulation using 

5,000 random samples from 12 HSPF parameters and 115 NEXRAD rainfall 

stations. 

4.1.1.1 Stability Results of the Monte Carlo Method 

Figure 10 shows the relationship between absolute relative errors (ARE) 

of simulated daily flows and number of Monte Carlo simulations - MCS (see 

equation 9 in methodology). Each line in Figure 10 represents one simulation day 

between 01/01/2003 and 12/31/2005. This Figure reveals that the ARE values 
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were close between runs 2,000 and 5,000. In general, higher MCS yielded lower 

ARE results.  

Figure 10. Stability of results using Monte Carlo method with Y-axis on a  
  logarithmic scale 

Table 21 depicts the minimum, median, and maximum values of ARE by 

selected MCS. This Table shows that the median ARE values from 3,000 to 

5,000 MCS were close.  It took approximately 12 hours of CPU time to produce 

5,000 simulations of the Luxapallila watershed model (with 115 NEXRAD grid 

points, one hour time step, and time simulation between 01/01/2002 and 

12/31/2005) using a desktop computer with a 3.06GHz Xeon(TM) CPU and 1.00 

GB of RAM. The best fit equation describing the relationship between the median 

ARE - MARE and the number of MCS was a power regression (MARE = 0.29 x 
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MCS-1.04). The resulting power regression depicted a coefficient of determination 

equal to 0.99, meaning 99% of variability in MARE values can be explained by 

the variability in MCS results. The power regression showed that to decrease the 

MARE by one order of magnitude from 7E-05 to 4E-06, 50,000 MCS and 120 hours 

of CPU time are required. Therefore, 5,000 MCS, a MARE value of 7E-05, and 12 

hours of CPU time were considered sufficient for the purpose of this research.  

Table 21. Minimum, median, and maximum values of ARE by selected Monte 
Carlo simulations 

MCS Minimum 
ARE 

Median 
ARE 

Maximum 
ARE 

2 4E-04 2E-01 2E+00 

10 2E-06 2E-02 9E-02 

100 3E-06 2E-03 1E-02 

1,000 
2,000 
3,000 
4,000 
5,000 

2E-07

5E-08

9E-08

1E-07

5E-07

 2E-04

 1E-04

 5E-05

 5E-05

 7E-05

 1E-03 

6E-04 

4E-04 

3E-04 

2E-04 

4.1.1.2 Parameter Uncertainty 

Confidence intervals for HSPF simulated daily streamflows at the 

watershed outlet were generated using the 5th and 95th percentiles after 5,000 

MCS (Table 22). From the bounds constructed for the period 01/01/2003 to 

12/31/2005, the Reliability and median Sharpness of the HSPF streamflow 

simulations were 65.4% and 16.1 m3/s, respectively. Thus, 65.4% of the daily 

observed data within the 90% confidence bounds (Reliability), and the median 

width of the 90% certainty bounds was 16.1 m3/s (Sharpness). 
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Table 22. Results of the Monte Carlo simulations for daily flows  

Observed flows under Reliability Observed flows over the Year the 5th percentile (%) (%) 95th percentile (%) 
2003 5.2 61.6 33.2 
2004 4.1 71.6 24.3 
2005 1.1 63.0 35.9 

2003-2005 3.5 65.4 31.1 

Median annual observed flows at the USGS station 2443500 for 2003, 

2004, and 2005 were 27.8 m3/s, 20.4 m3/s, and 19.2 m3/s, respectively. Previous 

flows compared to the 90% certainty bounds in Table 22 showed that the 

percentage of model Reliability was greater for the two low median annual flows 

than for the highest median annual flow. Observed streamflow data were 31.1% 

over the 95th percentile and 3.5% below the 5th percentile. Therefore, 

uncertainty on model results was higher in the upper level of certainty bounds 

than the lower level of certainty bounds. The median error of the observed flows 

over the simulated 95th percentile was 6.8 m3/s. The median error of the 

observed flows below the simulated 5th percentile was 2.6 m3/s. Median errors, 

6.8 m3/s and 2.6 m3/s, compared to the median observed flow between 2003 and 

2005 (i.e., 23.2 m3/s) were 29.3% and 11.4%, respectively. Therefore, observed 

flows out of the 90% certainty bounds were near to the bounds, especially for the 

5th percentile bound. 

Results of the model Reliability by observed flow percentiles are shown in 

Table 23. This table depicts that the greater the observed flow the poorer the 

HSPF performance. The model had a very good performance for below normal 
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flows (<25th percentile), but the poorest performance was for above normal flows 

(>75th percentile). 

Table 23. Results of the model Reliability by observed flow percentiles  
(2003-2005) 

Observed flow Observed flows within 90% 
percentiles certainty bounds (%) 

<25th 92.3 
25th-75th 60.2 

>75th 48.2 

The HSPF parameters evaluated in this study and related to storm flows 

(above normal flows) were as follows: index to infiltration capacity (INFILT), 

interflow inflow parameter (INTFW), and interflow recession parameter (IRC), 

(see Table 2 in literature review). The INFILT parameter is related to Soil 

Conservation Service (SCS) hydrologic soil groups (A, B, C, and D). The physical 

range of the INFILT parameter is between 0.025 mm/h and 12.7 mm/h (see 

Table 10 in methodology). Interflow from surface detention storage is controlled 

by the INTFW parameter, which has a range from 1.0 to 10.0. The IRC is the 

ratio of the current daily interflow discharge to the interflow discharge on the 

previous day; it ranges from 0.35 to 0.85. The INFILT parameter showed the 

highest interval value with the highest variability (three orders of magnitude). 

Figures 11, 12, and 13 show the HSPF certainty bounds of the daily 

hydrograph for 2003, 2004, and 2005, respectively. Observed streamflow 

variations were closely tracked by the certainty bounds, and most of the 
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observed daily flows were located within or very near the HSPF certainty bounds. 

Fifth flow percentiles were usually lower than observed flows. Certainty bounds 

were narrow when rising limbs started (February/2003, May/2003, and 

December/2004). Peak flows showed the highest uncertainty (wide certainty 

bounds), for example, February/2003, May/2003, February and December/2004. 

These certainty bounds incorporated the uncertainty derived from input time 

series (rainfall and evapotranspiration), model structure (hydraulic routing uses 

the kinematic wave theory), model conceptualization (one basin, one main 

channel, seven pervious and impervious areas), and model parameterization 

(length and slope of overland flow) 
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Figure 11. Daily observed hydrographs and certainty bounds estimated by  
the MCS for 2003 
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Figure 12. Daily observed hydrographs and certainty bounds estimated by  
the MCS for 2004 

Figure 13. Daily observed hydrographs and certainty bounds estimated by  
the MCS for 2005 
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Selected storm events are shown in Figures 14-19. Figure 14 indicates 

that most of the observed storm events for February-March of 2003 were within 

the 90% certainty bounds; however, a few weeks before and after this time 

period, the observed flows were constantly over the 95th flow percentile. Figure 

15 illustrates that most of the observed flows were within the simulated certainty 

bounds for the summer of 2003.  Figure 16 depicts that the peak and recession 

limbs of the 95th flow percentile were delayed at least one day as compared with 

the observed flows; however, the rising limb of the highest event was mostly 

within the 90% certainty bounds.  Figure 17 shows fairly well simulated 90% 

certainty bounds for rising and recession limbs, but the observed peak flow was 

over the 95th percentile. Figure 18 indicates that the rising limbs of the 90% 

certainty bounds were fairly well simulated; however, the observed peak flow and 

recession limb were ahead of the 90% certainty bounds by one day. Figure 19 

depicts that the observed data were contained well within the 90% certainty 

bounds for the period of June to August 2005. In general, most of the observed 

flow data were close or within the HSPF certainty bounds. However, some 

observed peaks and recession limbs were ahead of the HSPF certainty bounds, 

possibly as a consequence of the following: the use of coarse data (only one 

USGS station) for the calculation of the storage-release relationships of the main 

channel (FTABLE); rainfall conceptualization (radar data rather than gage data); 

and/or wetland area conceptualization (simulated as a pervious area instead of a 

high water table area). Additional analyses of the HSPF certainty bounds, with 

respect to the conceptualization of the hydrology and hydraulic processes of the 
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Luxapallila Creek watershed, are required to determine the off shift of the model 

simulations. 
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Figure 14. Daily observed hydrographs and certainty bounds estimated by the 
MCS for February-March/2003 
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Figure 15. Daily observed hydrographs and certainty bounds estimated by the 
MCS for June-August/2003 
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Figure 16. Daily observed hydrographs and certainty bounds estimated by the 
MCS for February-March/2004 
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Figure 17. Daily observed hydrographs and certainty bounds estimated by the 
MCS for November-December/2004 
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Figure 18. Daily observed hydrographs and certainty bounds estimated by the 
MCS for April/2005 
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Figure 19. Daily observed hydrographs and certainty bounds estimated by the 
MCS for May-July/2005 

Table 24 depicts selected percentiles of the model Sharpness and 

observed flow. This table showed that the higher the observed flow, the higher 

the wide of certainty bounds (Sharpness). Additionally, the model Sharpness 

results were in the same order of magnitude as the observed data. 

Table 24. Selected percentiles of the model Sharpness and observed flows 

Percentile Model Sharpness 
(m3/s) 

Observed flow 
(m3/s) 

Minimum 4.8 4.2 
25th 10.8 11.4 
50th 16.2 23.2 
75th 27.0 45.3 

Maximum 336.7 492.7 
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4.1.2 Hydraulic Property Variability of the Main Channel 

This scenario evaluated the RF1 FTABLE database rather than the USGS 

FTABLE database used in the baseline scenario (see Table 9 in methodology). 

Model Reliability resulting from both FTABLE databases are presented in Table 

25. Relative error analysis of Table 25 showed underestimation of observed 

flows within the 90% certainty bounds by 6.0% when the RF1 FTABLE database 

was used. 

Table 25. Model Reliability results using the baseline and RF1 FTABLE  
  scenarios (2003-2005) 

Baseline RF1 FTABLE Relative error 
scenario (%) scenario (%) (%) 

65.4 61.5 -6.0 

Model Reliability results using the baseline and RF1 FTABLE scenarios by 

selected observed flow percentiles are shown in Table 26. The HSPF model 

results, using the RF1 FTABLE database, consistently underestimated observed 

flows within the 90% certainty bounds. The lowest and highest relative errors 

(see equation 10 in methodology) were -0.8% and -23.4%, respectively. Both 

scenarios calculated close results for normal and below normal flows. A large 

difference was calculated for above normal flows. 
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Table 26. Model Reliability results using the baseline and RF1 FTABLE  
scenarios by selected observed flow percentiles (2003-2005) 

Observed flow Baseline RF1 FTABLE Relative error 
percentiles scenario (%) scenario (%) (%) 

<25th 92.3 91.6 -0.8 
25th-75th 60.2 58.4 -3.0 

>75th 48.2 36.9 -23.4 

Figures 20-25 show comparisons of certainty bounds using the baseline 

and RF1 FTABLE scenarios for selected storms. The certainty bounds calculated 

by both scenarios differ considerably from one another. All of the certainty 

bounds of peak flows using the RF1 FTABLE database were higher than those of 

estimated with the baseline scenario. Most of the certainty bounds of storm 

events estimated with the RF1 FTABLE database were behind the baseline 

scenario results by at least one day.  
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Figure 20. Daily observed hydrographs and certainty bounds estimated by the 
baseline scenario and RF1 FTABLE scenario for February-
March/2003 
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Figure 21. Daily observed hydrographs and certainty bounds estimated by the 
baseline scenario and RF1 FTABLE scenario for June-August/2003 
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Figure 22. Daily observed hydrographs and certainty bounds estimated by the 
baseline scenario and RF1 FTABLE scenario for February-
March/2004 

Figure 23. Daily observed hydrographs and certainty bounds estimated by the 
baseline scenario and RF1 FTABLE scenario for November-
December/2004  
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Figure 24. Daily observed hydrographs and certainty bounds estimated by the 
baseline scenario and RF1 FTABLE scenario for April/2005  
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Figure 25. Daily observed hydrographs and certainty bounds estimated by the 
baseline scenario and RF1 FTABLE scenario for May-July/2005  
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Table 27 depicts selected percentiles of the model Sharpness (width of 

the 90% certainty bounds) using the baseline and RF1 FTABLE scenarios. The 

RF1 FTABLE scenario overestimated the model Sharpness for most of the 

percentiles. When both time series (1,096 days) of the model Sharpness were 

compared, the minimum, median, and maximum relative errors (see equation 11 

in methodology) were -29.3%, 3.7%, and 373.1%, respectively. These results 

showed a large range of relative errors, but the median relative error was close to 

zero (Figure 26). Figure 27 shows relative error of model Sharpness versus 

observed flows. In this Figure, most of the values were clustered between -25% 

and 25% of relative errors and observed flows lower than 100 m3/s. In general, 

any tendency was found when the model Sharpness using both scenarios was 

compared. However, high differences in some selected days (overpredicted flows 

using RF1 FTABLE in observed normal flows) were found. 

Table 27. Selected percentiles of the model Sharpness using the baseline 
and RF1 FTABLE scenarios 

Percentile Baseline scenario 
(m3/s) 

RF1 FTABLE scenario 
(m3/s) 

Minimum 4.8 4.3 
25th 10.8 11.6 
50th 16.2 17.3 
75th 27.0 29.3 

Maximum 336.7 627.6 
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Figure 26. Relative error of model Sharpness using the baseline and RF1 
  FTABLE scenarios 

Figure 27. Relative error of model Sharpness using the baseline and RF1 
FTABLE scenarios versus observed flow 
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In summary, the model Sharpness using the baseline scenario and RF1 

scenario differ significantly from one another (most of relative errors were 

calculated between -25% and 25%). Model Reliability differences were more 

marked for above normal flows than for normal and below normal flows. Flow 

peak certainty bounds calculated using the RF1 scenario were consistently 

higher than the baseline scenario results. The baseline scenario certainty bounds 

showed higher water retention times than the RF1 FTABLE scenario results. 

Most of the certainty bounds of storm events estimated by the RF1 FTABLE 

database were behind of the baseline scenario results by at least one day.  

4.1.3 Spatial Rainfall Variability 

This section evaluated the spatial rainfall variability on the Luxapallila 

Creek watershed and its propagation on model results. NEXRAD rainfall data 

from 01/01/2003 to 12/31/2005 were used in this study. 

4.1.3.1 Analysis of NEXRAD Data 

Spatial rainfall variability was studied using seven different sets of grid 

points of NEXRAD data (115, 109, 86, 58, 29, 6, and 2 grid points). NEXRAD 

rainfall data were recorded for 386 out of 1096 days between 01/01/2003 and 

12/31/2005, so analysis of rainfall spatial variability focused on these 386 days. 

The coefficient of variation of daily rainfall values by selected percentiles is 

showed in Table 28. There was a large range of coefficient of variation for the 

daily rainfall values among NEXRAD grid point sets (1.3% to 454.5%). The 
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baseline set of NEXRAD data (115 grid points) showed a high range of rainfall 

spatial variability among percentiles in the Luxapallila Creek watershed. There 

was no consistent pattern of variation from 115 grid points through 29 grid points; 

however, the coefficient of variation decreased for 6 grid points and 2 grid points. 

The 2 NEXRAD grid points showed the lowest spatial rainfall variation of the 

system. 

Table 28. Coefficient of variation (%) for daily rainfall values by selected 
  percentiles, 2003-2005 

115 109 86 58 29 6 2 
Percentile grid 

points 
grid 

points 
grid 

points 
grid 

points 
grid 

points 
grid 

points 
grid 

points 
0th 10.5 10.4 10.0 9.8 10.5 7.7 1.3 
5th 18.5 18.0 18.2 17.8 18.7 14.6 7.0 
25th 36.5 36.1 36.5 36.0 36.0 33.3 21.4 
50th 66.3 67.2 68.1 66.7 66.4 59.3 47.1 
75th 121.8 123.9 123.6 123.0 126.8 108.3 105.7 
95th 200.4 200.3 197.5 202.3 222.4 189.2 141.4 

100th 295.9 296.3 301.4 359.7 454.5 244.9 141.4 

Table 29 depicts selected percentiles of relative errors of daily NEXRAD 

rainfall coefficient of variation between 115 grid points and selected grid point 

sets (RECV). Negative RECV indicated lower spatial rainfall variability of the 

NEXRAD set evaluated (see equation 8 in methodology). Median RECV values 

were close to zero when 115 NEXRAD grid points were compared to 109, 86, 58, 

and 29 NEXRAD grid points. RECV values were greater when the number of 

NEXRAD grid points being evaluated was lower. The largest RECV values were 

calculated using 2 NEXRAD grid points. In general, rainfall percentiles lower than 
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50th showed decreased rainfall spatial variability with a decreasing number of 

NEXRAD grid points. However, for rainfall percentiles higher than 50th, the 

tendency was increased spatial rainfall variability due to a decreasing  number of 

NEXRAD grid points. 

Table 29. Relative errors of daily NEXRAD rainfall coefficient of variation  
between 115 grid points and the remaining sets (%) 

109 grid 86 grid 58 grid 29 grid 6 grid 2 gridPercentiles points points points points points points 
0th -17.9 -14.8 -26.7 -40.0 -71.0 -97.4 
5th -4.0 -7.0 -14.0 -18.6 -50.9 -85.0 

25th -1.6 -1.5 -6.0 -6.9 -27.3 -54.7 
50th -0.1 1.2 -0.7 1.1 -6.0 -24.2 
75th 1.3 3.7 3.8 9.4 14.0 6.5 
95th 2.6 7.3 12.3 27.3 41.0 70.5 
100th 4.7 15.1 25.1 60.5 86.1 155.0 

4.1.3.2 Propagation of Spatial Rainfall Variability on Model Results 

Again, the percentile analysis of model Reliability showed a decreasing 

trend with increasing observed flows (Table 30). There was no consistent pattern 

of variation among sets of rainfall grid points. The set of 2 NEXRAD grid points 

showed the poorest performance for below normal and normal flows. The set of 6 

NEXRAD grid points showed the poorest performance for above normal flows. 
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Table 30. Flow percentile analysis of model Reliability due to spatial rainfall  
variability (%) 

Flow 
percentiles 

115 grid 
points 

109 grid 
points 

86 grid 
points 

58 grid 
points 

29 grid 
points 

6 grid 
points 

2 grid 
points 

<25th 92.3 92.3 92.7 92.3 91.2 90.1 84.3 
25th-75th 60.2 60.6 60.0 60.4 58.8 56.4 54.0 

>75th 48.2 47.8 47.8 47.8 46.0 42.3 45.6 

Table 31 shows percentile analysis of model Sharpness due to spatial 

rainfall variability. The model Sharpness results using only 2 NEXRAD grid points 

were markedly different from those results using the remaining NEXRAD data 

sets (115, 109, 86, 58, 29, and 6 grid points). Minimum, median, and maximum 

relative errors between 115 grid points and 2 NEXRAD grid points were -87.2%, 

-9.0%, and 132.8%, respectively. A negative relative error means lower model 

Sharpness using 2 rather than 115 NEXRAD grid points. 

Table 31. Percentile analysis of model Sharpness due to spatial rainfall 
  variability (%) 

Percentiles 115 grid 
points 

109 grid 
points 

86 grid 
points 

58 grid 
points 

29 grid 
points 

6 grid 
points 

2 grid 
points 

Minimum 4.8 4.8 4.8 4.8 4.8 4.9 4.4 
25th 10.8 10.7 10.7 10.9 10.6 11.0 9.0 
50th 16.2 16.1 16.1 16.2 15.9 16.4 14.4 
75th 27.0 27.0 26.9 27.5 26.7 27.5 25.3 

Maximum 336.7 330.4 330.2 360.4 346.2 391.5 307.3 

Figures 28 and 29 show scatterplots of the 5th flow percentiles using 115 

grid points versus 109, 86, 58, and 29 grid points and versus 6 and 2 grid points, 

respectively, for the 2003-2005 period. The points clustered along the 1:1 line 
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are shown in Figure 28. It was clear from Figure 29 that the flow points clustered 

along a 1:1 line for values lower than 50 m3/s, but they were not clustered for 

flow values greater than 50 m3/s. In addition, flows estimated using 2 and 6 grid 

points presented a tendency of underestimating and overestimating flows greater 

than 50m3/s, respectively. Figures 30 and 31 show scatterplots of the 95th flow 

percentiles using 115 grid points versus 109, 86, 58, and 29 grid points and 

versus 6 and 2 grid points, respectively, for the 2003-2005 period.  These graphs 

showed the same trends as Figures 28 and 29. 

 
 

Figure 28. Scatterplot of 5th flow percentiles using 115 grid points versus 109, 
86, 58, and 29 grid points (2003-2005) 
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Figure 29. Scatterplot of 5th flow percentiles using 115 grid points versus 6 
and 2 grid points (2003-2005) 

 
 
 

Figure 30. Scatterplot of 95th flow percentiles using 115 grid points versus 
109, 86, 58, and 29 grid points (2003-2005) 
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Figure 31. Scatterplot of 95th flow percentiles using 115 grid points versus 6 
and 2 grid points (2003-2005) 

In summary, large variations in rainfall spatial variability were found when 

decreasing the number of NEXRAD grid points in the Luxapallila Creek 

watershed model especially when 6 and 2 NEXRAD grid points were evaluated. 

The model Sharpness results using 2 NEXRAD grid points were markedly 

different from those results using the baseline scenario. The model Reliability 

results using 109, 86, 58, and 29 NEXRAD grid points were close to those results 

using the baseline scenario (115 NEXRAD grid points). 

4.2 Uncertainty Methods 

Results of parameter uncertainty propagation on HSPF model outputs 

using the Harr method are shown in this section. Additionally, the Harr results 
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were compared to the baseline scenario results (see section 4.1.1.2 Parameter 

Uncertainty). 

4.2.1 Harr Method 

The Harr method results were computed for the same timescales and 

components as were presented for the baseline scenario results. The Harr 

method used 24 simulations (two times the number of HSPF parameters) to 

solve the system, and normal distributions were used for the selected HSPF 

parameters. 

Model Reliability results using the Monte Carlo and Harr methods are 

presented in Table 32. Relative error analysis in Table 32 shows overestimation 

of observed flows within 90% of certainty bounds around 11% when the Harr 

method was used. 

Table 32. Model Reliability results using MCS and Harr method (2003-2005) 

MCS (%) Harr (%) Relative error (%) 
65.4 72.7 11.2 

Relative errors of model Reliability results by observed flow percentiles 

from the Monte Carlo and Harr methods are shown in Table 33. The lowest and 

highest relative errors were -0.8% and 18.6%, respectively. Both uncertainty 

methods calculated close results for below normal flows. The Harr method 
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consistently overestimated observed flows within the 90% certainty bounds for 

normal and above normal flows. 

Table 33. Relative errors of model Reliability results by observed flow 
  percentiles due to the Monte Carlo and Harr methods (2003-2005) 

Observed flow MCS Harr Relative error 
percentiles (%) (%) (%) 

<25th 92.3 91.6 -0.8 
25th-75th 60.2 71.4 18.6 

>75th 48.2 55.8 15.9 

Figure 32 displays 5th flow percentiles by the MCS and Harr methods. 

High variability and a markedly high overestimation were shown by the Harr 

results. Figure 33 illustrates 95th flow percentiles by the MCS and Harr methods 

in which a markedly high overestimation and high variability were shown by the 

Harr results. 
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Figure 33. Scatterplot of 95th flow percentiles by the MCS and Harr methods  
  (2003- 2005) 

 

Figure 32. Scatterplot of 5th flow percentile by the MCS and Harr methods  
  (2003- 2005) 
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Figures 34-39 show comparisons of certainty bounds generated by the 

MCS and Harr methods for selected storms. The certainty bounds calculated by 

both methods significantly differ from one another. All of the certainty bounds for 

peak flows by the Harr method were wider and higher than those yielded by the 

MCS. 
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Figure 34. Daily observed hydrographs and certainty bounds estimated by the 
MCS and Harr methods for February-March/2003 
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Figure 35. Daily observed hydrographs and certainty bounds estimated by the 
MCS and Harr methods for June-August/2003 
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Figure 36. Daily observed hydrographs and certainty bounds estimated by the 
MCS and Harr methods for February-March/2004 
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Figure 37. Daily observed hydrographs and certainty bounds estimated by the 
MCS and Harr methods for November-December/2004 
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Figure 38. Daily observed hydrographs and certainty bounds  
estimated by the MCS and Harr methods for April/2005  
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Figure 39. Daily observed hydrographs and certainty bounds estimated by the 
MCS and Harr methods for May-July/2005 

Table 34 depicts selected percentiles of the model Sharpness calculated 

using the Monte Carlo and Harr methods. Clearly, the Harr method results 

overestimated the width of the 90% certainty bounds (model Sharpness) for each 

percentile. The minimum, median, and maximum relative errors of Sharpness 

criteria values between the MCS and Harr methods were -43.6%, 20.7%, and 

563.6%, respectively. The higher model Sharpness calculated using the Harr 

method may be explained by the use of just 24 Harr runs rather than the 5,000 

Monte Carlo runs. Additionally, the Harr method selected the parameter values 

using normal distributions of the evaluated parameters rather than the triangular 

distributions used by the Monte Carlo method.  
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Table 34. Selected percentiles of the range of the model Sharpness using 
the Monte Carlo and Harr methods 

MCS HarrPercentile (m3/s) (m3/s) 
Minimum 4.8 7.1 

25th 10.8 13.4 
50th 16.2 19.1 
75th 27.0 34.9 

Maximum 336.7 444.4 

A drawback of the Harr method was the use of several parameter limit 

values rather than the calculated values to stay within the pre-established range 

of the HSPF parameters.  Detailed definition of the 12 HSPF hydrology 

parameters used in this study is found in USEPA (2000). Table 35 shows the 

number of HSPF parameter values calculated out range using the Harr method. 

In general, 16% of the parameter values calculated by the Harr method were 

changed. HSPF parameters related to storm events, INTFW and IRC, yielded 

20.8% and 16.7% respectively of values out of range. All of the new INTFW 

values were relocated to the lowest limit and, therefore, peak flows were 

expected to increase. IRC and AGWRC parameters control the rate at which 

interflow and groundwater, respectively, are discharged from storage. The 

KVARY parameter is used to describe non-linear groundwater recession rate.  All 

of the new IRC and AGWRC values were changed to the highest limit and thus, 

slow flow rates in the recession limbs were estimated. The new KVARY values 

were relocated to the lowest limit and consequently, no seasonal variability of the 

groundwater flow was expected. DEEPFR, BASETP, AGWETP, CEPSC, and 

101 



www.manaraa.com

 

 

 

 

 
 
 

 
 
 
 
 
 

 

 

 

 

 

LZETP parameters control loss of water from the system and were replaced to 

the lowest value; therefore, streamflows were expected to increase.  

Table 35. Number of parameter values calculated out of range by the Harr  
method 

Parameter 
Relocation of the 

coordinates 
Lowest Highest 

Number of parameter 
values out of the 

range 
Percentage of 

total 

LZSN 1 1 4.2 
INFILT 0 0.0 
KVARY 4 4 16.7 
AGWRC 2 2 8.3 
DEEPFR 9 9 37.5 
BASETP 5 5 20.8 
AGWETP 7 7 29.2 
CEPSC 5 5 20.8 
UZSN 1 1 4.2 
INTFW 5 5 20.8 

IRC 4 4 16.7 
LZETP 3 1 4 16.7 

In summary, the rearrangement of the Harr coordinates yielded more 

streamflow in the system and, therefore, the Harr model Sharpness was higher 

than the Monte Carlo results (baseline scenario). Christian and Baecher (2002) 

analyzed the problem of coordinate relocation in the Harr method for bounded 

parameters. They pointed out that “there seem to be no simple, elegant ways out 

of this dilemma.” The use of other uncertainty methods (e.g., Rosenblueth’s 

method or the Monte Carlo method) or reducing the number of random variables 

was recommended by the authors. 
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4.3 Comparison between the Baseline Scenario and the Remaining 

Scenarios 

Table 36 depicts the analysis of the model Reliability (%) among 

evaluated scenarios. Below normal flow values (flow values lower than 25th 

percentile) yielded close results for all the scenarios, except the one using 2 

NEXRAD grid points. Table 37 shows relative errors of the model Reliability 

(REreliability) between the baseline scenario and the remaining scenarios (see 

equation 10 in methodology). The range of REreliability values for below normal 

flows was between -8.7% and 0.4. The scenario that used 2 NEXRAD grid points 

yielded the highest underestimation (-8.7%) of observed flows between the 90% 

certainty bounds for below normal flows. The range of REreliability values for normal 

flows (flow values between 25th and 75th percentiles) was between -10.3% and 

18.6%. The scenarios that applied the Harr method and 2 NEXRAD grid points 

showed the highest opposite results. The range of REreliability values for above 

normal flows (flow values greater than 75th percentile) was between -23.4% and 

15.8%. The scenarios that utilized the Harr method and RF1 FTABLE database 

yielded the highest overestimation and underestimation, respectively, of 

observed flows between the 90% certainty bounds. 
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Table 36. Flow percentile analysis of the model Reliability (%) among 
evaluated scenarios 

Scenario <25th 25th-75th >75th 
Baseline 92.3 60.2 48.2 

Probabilistic point estimate method (Harr’s 
method) 91.6 71.4 55.8 

Hydraulic property variability of the main channel 
(RF1 FTABLE database) 91.6 58.4 36.9 

109 92.3 60.6 47.8 
86 92.7 60.0 47.8 

Spatial rainfall variability 58 92.3 60.4 47.8 
(number of NEXRAD grid points) 29 91.2 58.8 46.0 

6 90.1 56.4 42.3 
2 84.3 54.0 45.6 

Table 37. Relative errors of the model Reliability (REreliability) between the 
baseline scenario and the remaining scenarios 

Scenario <25th 25th-75th >75th 
Probabilistic point estimate method 

(Harr’s method) -0.8 18.6 15.8 
Hydraulic property variability of the main channel 

(RF1 FTABLE database) -0.8 -3.0 -23.4 
109 0.0 0.7 -0.8 
86 0.4 -0.3 -0.8 

Spatial rainfall variability 58 0.0 0.3 -0.8 
(number of NEXRAD grid points) 29 -1.2 -2.3 -4.6 

6 -2.4 -6.3 -12.2 
2 -8.7 -10.3 -5.4 

Table 38 depicts the model Sharpness results among evaluated 

scenarios. Below normal flow simulations yielded model Sharpness values 

between 9.0 and 13.4 m3/s. Normal flow simulations showed model Sharpness 

results between 14.4 and 19.1 m3/s. Above normal flow simulations yielded 

model Sharpness figures between 25.3 and 34.9 m3/s. Table 39 shows relative 

errors of the model Sharpness  (RESharpness) calculated between the baseline 
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scenario and the remaining scenarios. The range of RESharpness for below normal 

flows was between -16.7% and 24.1%. The scenarios that utilized the Harr 

method and 2 NEXRAD grid points yielded the highest overestimation and 

underestimation, respectively, of the model Sharpness for below normal flows. 

The range of RESharpness for normal flows was between –11.1% and 17.9%. 

Again, the scenarios that applied the Harr method and 2 NEXRAD grid points 

showed the highest opposite results. The range of RESharpness for above normal 

flows was between -6.3% and 29.3%. As showed for below and normal flows, the 

scenarios that utilized the Harr method and the 2 NEXRAD grid points yielded 

the highest overestimation and underestimation, respectively, of the model 

Sharpness,. 

Table 38. Selected percentiles of the model Sharpness (m3/s) among 
evaluated scenarios 

Scenario <25th 25th-75th >75th 
Baseline 10.8 16.2 27.0 

Probabilistic point estimate method 
(Harr’s method) 13.4 19.1 34.9 

Hydraulic property variability of the main channel 
(RF1 FTABLE database) 11.6 17.3 29.3 

109 10.7 16.1 27.0 
86 10.7 16.1 26.9 

Spatial rainfall variability 58 10.9 16.2 27.5 
(number of NEXRAD grid points) 29 10.6 15.9 26.7 

6 11.0 16.4 27.5 
2 9.0 14.4 25.3 
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Table 39. Relative errors of the model Sharpness (RESharpness) calculated 
between the baseline scenario and the remaining scenarios (%) 

Scenario <25th 25th-75th >75th 
Probabilistic point estimate method 

(Harr’s method) 24.1 17.9 29.3 
Hydraulic property variability of the main channel 

(RF1 FTABLE database) 7.4 6.8 8.5 
109 -0.9 -0.6 0.0 
86 -0.9 -0.6 -0.4 

Spatial rainfall variability 58 0.9 0.0 1.9 
(number of NEXRAD grid points) 29 -1.9 -1.9 -1.1 

6 1.9 1.2 1.9 
2 -16.7 -11.1 -6.3 

In summary, the impact between the baseline scenario and the remaining 

scenarios in the Luxapallila Creek HSPF watershed model was evaluated using 

two criteria: the model Reliability (number or percentage of observed flows within 

the HSPF 90% certainty bounds) and the model Sharpness (width of the HSPF 

90% certainty bounds). 

The 2 NEXRAD grid point scenario yielded the highest discrepancy in 

model Reliability when flows below normal were evaluated. The Harr scenario for 

normal flows depicted the largest difference when model Reliability was 

evaluated. The RF1 FTABLE scenario yielded the largest underestimation of 

observed flows within the HSPF 90% certainty bounds when flows above normal 

were evaluated. 

The Harr scenario showed the largest difference for all three flow groups 

when HSPF Sharpness was evaluated. The Harr and RF1 FTABLE scenarios 

consistently overestimated the width of the 90% certainty bounds. The scenario 
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using 2 NEXRAD grid points showed the largest underestimation of HSPF model 

Sharpness, for below normal, normal, and above normal flows. 
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CHAPTER V 

SUMMARY AND CONCLUSIONS 

The evaluation of three uncertainty sources (parameter uncertainty, 

channel hydraulic variability, and rainfall spatial variability) provided information 

about the sources and degree of the Hydrologic Simulation Program – 

FORTRAN (HSPF) streamflow uncertainty, which is essential for model 

applications and decision making. This study evaluated characteristics of 

uncertainty in each of these scenarios using two systematic approaches: the 

Monte Carlo method, considered the baseline scenario and the Harr method, a 

probabilistic point estimate method. This study used meteorological, topographic, 

land use, and streamflow data from the Luxapallila Creek watershed, 

Mississippi/Alabama. Daily observed streamflow data from 01/01/2003 to 

12/31/2005 at the watershed outlet (USGS station 2443500) were used to assess 

the 90% certainty bounds of streamflow simulations for each scenario. Daily 

observed streamflow data were clustered into three groups to assess the model 

performance by each class: below normal (<11.4 m3/s), normal (11.4 m3/s and 

45.3 m3/s), and above normal flows (>45.3 m3/s). The difference between the 

baseline scenario and the remaining scenarios applied to the HSPF Luxapallila 

Creek watershed model was evaluated using two criteria: the number or 
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percentage of observed flows within the HSPF 90% certainty bounds (Reliability) 

and the width of the HSPF 90% certainty bounds (Sharpness). 

The first question addressed in this study was, “How uncertainty in model 

parameters, rainfall spatial data, and channel hydraulic properties propagates 

through flow simulations of a lumped watershed model?” 

• Analysis of parameter uncertainty propagation on streamflow simulations 

from 12 HSPF parameters was accomplished using 5,000 random 

samples from triangular distributions for each parameter and 115 

NEXRAD grid point data from 01/01/2003 to 12/31/2005. The parameter 

uncertainty propagation results revealed that the HSPF model Reliability 

was higher for below normal flows than normal and above normal flows. 

Additionally, the model Sharpness results were higher for above normal 

flows than normal and below normal flows, respectively. Thus, the higher 

the model Sharpness, the lower the model Reliability. Observed flows out 

of the 90% certainty bounds were near the bounds, especially for the 5th 

percentile bound (11.4% of discrepancy). Assumptions of this modeling 

exercise that may affect model Reliability and Sharpness results were as 

follows: one cross section of data collected at the outlet represented the 

entire system (the main channel is 70 km length); wetland areas (100 km2) 

were simulated as a pervious area assuming no interaction with the water 

table (see HSPF manual v12, section: water budget pervious, high water 

table, low gradient); riparian areas could be affecting the hydraulic 

properties of the channel (such as water storage-release relationships); 
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the Luxapallila model did not have any interaction with groundwater flow; 

the model was segmented by one basin (1,801 km2); the HSPF model 

algorithms did not account for interaction among hydrologic respond units 

(HRUs) (HRUs were simulated separately one from each other), but 

interaction between HRUs and the main channel was done (surface 

runoff, interflow, and baseflow volumes go directly to the main channel); 

HSPF model Reliability was evaluated using observed deterministic data 

at the outlet of the watershed (observed data were assumed “exactly” 

known); and, model parameters were perturbed in a lumped fashion (no 

distinction among pervious areas). Most of the previous assumptions were 

due to the lack of observed data, and/or limitations of the HSPF 

algorithms. 

• The effect of spatial rainfall variability was studied using six sets of 

random NEXRAD grid points (109, 86, 58, 29, 6, and 2 grid points) from 

the 115 available NEXRAD grid points. Large variations in rainfall spatial 

variability were found by decreasing the number of NEXRAD grid points in 

the Luxapallila Creek watershed model, especially when 6 and 2 NEXRAD 

grid points were evaluated. The model Sharpness results using 2 

NEXRAD grid points were markedly different from those results using the 

remaining NEXRAD data sets. For instance, the median relative error of 

coefficient of variation between 115 NEXRAD data and 2 NEXRAD data 

was -24.2%; this error yielded a median relative error of -9.0% for model 

Sharpness between the same scenarios. The model Reliability results 
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using 109, 86, 58, and 29 NEXRAD grid points were close to those results 

using the baseline scenario (115 NEXRAD grid points). 

• Uncertainty in channel hydraulic properties was assessed by comparing 

the baseline scenario (USGS FTABLE) versus the RF1 FTABLE scenario. 

The results suggested that hydraulic property variability of the main 

channel affected storm event paths at the watershed outlet, especially the 

time to peak flow and recessing limbs of storm events. The uncertainty 

analysis also revealed that a better physical characterization of the system 

gave better results and that FTABLE data development is a critical issue 

in the HSPF Luxapallila model. 

The second question addressed herein was “How consistent is the Harr 

method (probabilistic point estimate method) in estimating the 90% certainty 

bounds of streamflow simulations?” 

• Variability of 12 HSPF hydrology parameters was propagated through the 

model to compute the 90% certainty bounds of daily streamflow 

simulations. The Harr method calculated 11% more observed flows within 

the 90% certainty bounds than the Monte Carlo results. Computational 

efficiency was improved, using 24 runs (two minutes) with Harr’s method 

to estimate the HSPF 90% certainty bounds versus 5,000 runs (12 hours) 

using the Monte Carlo method. A drawback of the Harr method was the 

use of several parameter limit values instead of the calculated value to 

keep the pre-established range of the HSPF parameters. In some 

parameters around 30% of values were changed and the rearrangement 
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of the Harr coordinates yielded more streamflow in the system. Therefore, 

the model Sharpness was wider with the Harr results than with the Monte 

Carlo results (median relative errors around 20% were calculated for 

model Sharpness). Model Sharpness was wider with the Harr method 

because it forced extreme values of each parameter to be sampled with 

the same or higher frequency as the central values, thus exploring a 

broader range of HSPF outputs than those generated using the Monte 

Carlo method (triangular distributions). The Harr method Sharpness bias 

was fairly constant throughout the different flows (below normal, normal, 

and above normal); however, the model Reliability results were variable 

throughout the different flows, with relative errors of -0.8%, 18.6%, and 

15.8% for below normal, normal, and above normal flows, respectively. 

The comparison showed that Harr’s method could be an appropriate initial 

indicator of parameter uncertainty propagation on streamflow simulations, 

in particular on hydrology models with several parameters. 

The third question raised in this study was: “Where do researchers need 

to put resources in terms of data collection so uncertainty in streamflow 

simulations may be lowered?” 

• The relative errors of model Sharpness for below normal, normal, and 

above normal flows were lower than 100% (between -16.7% and 8.5%) 

when rainfall spatial variability and channel hydraulic variability were 

evaluated. Model Reliability showed a bias tendency of decreasing when 

using both sources of uncertainty (rainfall spatial variability and channel 
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hydraulic variability), with relative error values as low as -23.4%. The 

storm paths (time to peak flow and slope of recessing limbs) changed 

dramatically when hydraulic property variability was analyzed, with a 

relative error of -23.4% for model Reliability between the baseline scenario 

and RF1 FTABLE scenario was for above normal flows). Finally, 

parameter uncertainty was still more important than other sources of 

uncertainty analyzed in this study because all of the median relative errors 

of HSPF model Reliability and Sharpness were lower than +/- 100%.   
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CHAPTER VI 

RECOMMENDATIONS AND FUTURE RESEARCH 

The focus of this study was on the quantification of uncertainty from three 

different sources in the Hydrologic Simulation Program – FORTRAN (HSPF) 

streamflow results: parameter uncertainty, channel hydraulic variability, and 

rainfall spatial variability. However, it must be noted that other sources of 

uncertainty exist and propagate in a similar fashion on the model outputs.  Other 

sources of uncertainties can arise from land use/land cover inputs and 

discretization; watershed topographic delineation or digital elevation model 

resolution; reach network discretization; potential evapotranspiration and 

evaporation data; rainfall inputs; and model structure. Further research is 

required to quantify the error propagation from these areas on model simulations.  

Additionally, this study focused on evaluating Harr’s method, a probabilistic point 

method. For hydrology models with several parameters (this study used 12 

HSPF parameters), the Harr method technique could be an appropriate initial 

indicator of parameter error propagation on streamflow simulations. More work 

should be devoted to better calculating the probability density function and 

certainty bounds of model parameters. Finally, parameter sensitivity analysis is 
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required to find the most important parameters that affect the HSPF certainty 

bounds. 
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